Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/189755
COMPARTIR / EXPORTAR:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Título

Multi-model remote sensing assessment of primary production in the subtropical gyres

AutorRegaudie de Gioux, Aurore CSIC ORCID; Huete-Ortega, María; Sobrino, Cristina CSIC ORCID; López-Sandoval, Daffne CSIC ORCID; González, Natalia; Fernández Carrera, A.; Vidal, Montserrat; Marañón, Emilio; Cermeño, Pedro CSIC ORCID ; Latasa, Mikel CSIC ORCID ; Agustí, Susana CSIC ORCID; Duarte, Carlos M. CSIC ORCID
Palabras claveRemote PP model
Skills
Subtropical gyre
Primary production
Fecha de publicaciónago-2019
EditorElsevier
CitaciónJournal of Marine Systems 196: 97-106 (2019)
ResumenThe subtropical gyres occupy about 70% of the ocean surface. While primary production (PP) within these oligotrophic regions is relatively low, their extension makes their total contribution to ocean productivity significant. Monitoring marine pelagic primary production across broad spatial scales, particularly across the subtropical gyre regions, is challenging but essential to evaluate the oceanic carbon budget. PP in the ocean can be derived from remote sensing however in situ depth-integrated PP (IPPis) measurements required for validation are scarce from the subtropical gyres. In this study, we collected >120 IPPis measurements from both northern and southern subtropical gyres that we compared to commonly used primary productivity models (the Vertically Generalized Production Model, VGPM and six variants; the Eppley-Square-Root model, ESQRT; the Howard–Yoder–Ryan model, HYR; the model of MARRA, MARRA; and the Carbon-based Production Model, CbPM) to predict remote PP (PPr) in the subtropical regions and explored possibilities for improving PP prediction. Our results showed that satellite-derived PP (IPPsat) estimates obtained from the VGPM1, MARRA and ESQRT provided closer values to the IPPis (i.e., the difference between the mean of the IPPsat and IPPis was closer to 0; |Bias| ~ 0.09). Model performance varied due to differences in satellite predictions of in situ parameters such as chlorophyll a (chl-a) concentration or the optimal assimilation efficiency of the productivity profile (PBopt) in the subtropical region. In general, model performance was better for areas showing higher IPPis, highlighting the challenge of PP prediction in the most oligotrophic areas (i.e. PP < 300 mg C m−2 d−1). The use of in situ chl-a data, and PBopt as a function of sea surface temperature (SST) and the mixed layer depth (MLD) from gliders and floats in PPr models would improve their IPP predictions considerably in oligotrophic oceanic regions such as the subtropical gyres where MLD is relatively low (<60 m) and cloudiness may bias satellite input data
Descripción10 pages, 8 figures, 5 tables, 1 appendix
Versión del editorhttps://doi.org/10.1016/j.jmarsys.2019.03.007
URIhttp://hdl.handle.net/10261/189755
DOI10.1016/j.jmarsys.2019.03.007
Identificadoresissn: 0924-7963
e-issn: 1879-1573
Aparece en las colecciones: (IMEDEA) Artículos
(ICM) Artículos
(IEO) Artículos




Ficheros en este ítem:
Fichero Descripción Tamaño Formato
Regaudie_et_al_2019_preprint.pdf1,3 MBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo

CORE Recommender

SCOPUSTM   
Citations

13
checked on 20-abr-2024

WEB OF SCIENCETM
Citations

9
checked on 23-feb-2024

Page view(s)

299
checked on 24-abr-2024

Download(s)

195
checked on 24-abr-2024

Google ScholarTM

Check

Altmetric

Altmetric


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.