English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/189119
Share/Impact:
Statistics
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE
Exportar a otros formatos:

Title

Correlation between surface reconstruction and polytypism in InAs nanowire selective area epitaxy

AuthorsLiu, Ziyang; Merckling, Clement; Rooyackers, Rita; Richard, Olivier; Bender, Hugo; Mols, Yves; Vila, María; Rubio-Zuazo, J. ; Castro, Germán R. ; Collaert, Nadine; Thean, Aaron; Vandervorst, Wilfried; Heyns, Marc
Issue DateDec-2017
PublisherAmerican Physical Society
CitationPhysical Review Materials 1(7): 074603 (2017)
AbstractThemechanism of widely observed intermixing of wurtzite and zinc-blende crystal structures in InAs nanowire (NW) grown by selective area epitaxy (SAE) is studied. We demonstrate that the crystal structure in InAs NW grown by SAE can be controlled using basic growth parameters, and wurtzitelike InAs NWs are achieved.We link the polytypic InAs NWs SAE to the reconstruction of the growth front (111)B surface. Surface reconstruction study of InAs (111) substrate and the following homoepitaxy experiment suggest that (111) planar defect nucleation is related to the (1 × 1) reconstruction of InAs (111)B surface. In order to reveal it more clearly, a model is presented to correlate growth temperature and arsenic partial pressure with InAs NW crystal structure. This model considers the transition between (1 × 1) and (2 × 2) surface reconstructions in the frame of adatom atoms adsorption/desorption, and the polytypism is thus linked to reconstruction quantitatively. The experimental data fit well with the model, which highly suggests that surface reconstruction plays an important role in the polytypism phenomenon in InAs NWs SAE.https://doi.org/10.1103/PhysRevMaterials.1.074603
URIhttp://hdl.handle.net/10261/189119
DOIhttp://dx.doi.org/10.1103/PhysRevMaterials.1.074603
Identifiersdoi: 10.1103/PhysRevMaterials.1.074603
e-issn: 2475-9953
Appears in Collections:(ICMM) Artículos
Files in This Item:
File Description SizeFormat 
accesoRestringido.pdf15,38 kBAdobe PDFThumbnail
View/Open
Show full item record
Review this work
 


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.