Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/188571
COMPARTIR / EXPORTAR:
logo share SHARE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Campo DC Valor Lengua/Idioma
dc.contributor.authorGanduglia-Pirovano, M. V.-
dc.contributor.authorLópez-Durán, David-
dc.contributor.authorCarrasco Rodríguez, Javier-
dc.contributor.authorFernández Torre, Delia-
dc.contributor.authorPérez, Rubén-
dc.date.accessioned2019-08-20T09:37:39Z-
dc.date.available2019-08-20T09:37:39Z-
dc.date.issued2014-09-14-
dc.identifier.citation50th Symposium on Theoretical Chemistry (2014)-
dc.identifier.urihttp://hdl.handle.net/10261/188571-
dc.descriptionTrabajo presentado en el 50th Symposium on Theoretical Chemistry, celebrado en Viena (Austria) del 14 al 18 de septiembre de 2014.-
dc.description.abstractCerium oxide (Ce02, ceria) surfaces are important for ma ny appl ications, particula rly catalysis. The importance relies to a large extent on its facile reducibility and the associated ability to release lattice oxygen. On removing an O atom, two electrons are left behind that form two reduced Ce3+ species. The electrons occupy split-off states of the initially empty Ce 4f band, Jying inside the 02p-Ce5d band gap of ceria and bei ng highly localized in space [l ]. In this work, we apply density-functional theory (DFT) with the DFT+U approach and show that the ability of ceria to stabilize reduced states is at the origin of the unexpected cata lytic activity of ceria-based systems such as ceria surfaces for the conversion of alkynes to olefins [2], and of ceria supported Ni nanoparticl es for H2 production [3]. DFT simulations of acetylene hydrogenat ion on Ce02(1 l l ) provide molecular-leve! insight into the active site and reaction mechanism, where the formation of highly reactive C2H2 radical species is found to be essential [4], and help rationalize the applicabi l ity of Ce02 as a catalyst for olefi n production. Theoretical Ni/Ce02(l l l) model catalysts revea!strong Ni-ceria interactions -leading to Ni2+ and Ce3 species- as the key factor responsible of a not too weaken C-0 bond upon CO adsorption and a low H20 dissociation barrier , both making the Ni/Ce0 2 system attractive for the production of hydrogen vía the water­ gas shift (CO+H20C02+H2) reaction .-
dc.rightsclosedAccess-
dc.titleThe role of electron localization in the catalytic function of cerium-oxide-based systems-
dc.typecomunicación de congreso-
dc.date.updated2019-08-20T09:37:39Z-
dc.description.versionPeer Reviewed-
dc.language.rfc3066eng-
dc.relation.csic-
dc.type.coarhttp://purl.org/coar/resource_type/c_5794es_ES
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.openairetypecomunicación de congreso-
Aparece en las colecciones: (ICP) Comunicaciones congresos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato
accesoRestringido.pdf15,38 kBAdobe PDFVista previa
Visualizar/Abrir
Show simple item record

CORE Recommender

Page view(s)

123
checked on 24-abr-2024

Download(s)

24
checked on 24-abr-2024

Google ScholarTM

Check


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.