Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/188519
COMPARTIR / EXPORTAR:
logo share SHARE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Título

Tsunamigenic structures in the Gulf of Cadiz and the workflow for tsunami hazard assessment

AutorSànchez-Serra, Cristina CSIC ORCID ; Gràcia, Eulàlia CSIC ORCID ; Urgeles, Roger CSIC ORCID ; Martínez-Loriente, S. CSIC ORCID ; Gómez de la Peña, L. CSIC ORCID; Lorito, Stefano; Piatanesi, Alessio; Romano, Fabrizio; Maesano, Francesco; Basili, Roberto; Volpe, Manuela
Fecha de publicaciónjun-2019
Citación4th Fault2SHA Workshop (2019)
ResumenThe southwestern margin of the Iberian Peninsula, which includes the Gulf of Cadiz, is characterized by a present -day active deformation mainly driven by the NW-SE trending convergence (3.8-5.6 mm.yr-1) between the Nubia and Eurasia plates. The SW Iberian margin is a seismogenic area characterized by low to moderate magnitudes (Mw ≤ 5.5). In addition, this area hosts some of the largest earthquakes occurred in Western Europe, such as the 1st of November 1755 Lisbon Earthquake and tsunami (Mw ≥ 8.5). The active fault structures can be classified in two main families: a) WNW-ESE trending dextral strike-slip faults, and b) NE-SW trending thrusts faults. To characterize the seismogenic and tsunamigenic potential of each fault system, we develop several tsunami models. The workflow involves the following tasks: 1. Interpretation of the seismic profiles (in time) defining the traces of main active faults; 2. Mapping the trace of the faults using multibeam bathymetry; 3. Mesh of the fault surface and their respective horizons to generate a 3D model of the subsurface for each fault; 4. Conversion of the 3D model from time-to-depth assigning a velocity value (i.e. from available velocity models of the area) to the interval between horizons; 5.Defining the specific attributes for each fault, such as Length, Width, Depth, Strike, Dip and Rake; 6. Determine the maximum magnitude and slip for each fault. The maximum magnitude should be compatible with the length and the width previously defined, so we use the Leonard (2014) scaling-law; 7. Finally, the tsunami simulations for each fault have been run using “Tsunami-HySEA” software. We run two simulations for each fault, the first one considering the fault as an inclined planar surface and the second simulations used the 3D mesh
Descripción4th Fault2SHA Workshop, Fault Complex Interaction: Characterization and Integration into Seismic Hazard Assessment (SHA), 3-5 June 2019, Barcelona
URIhttp://hdl.handle.net/10261/188519
Aparece en las colecciones: (ICM) Comunicaciones congresos




Ficheros en este ítem:
Fichero Descripción Tamaño Formato
Sanchez_Serra_et_al_2019.pdf857,69 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo

CORE Recommender

Page view(s)

209
checked on 18-mar-2024

Download(s)

86
checked on 18-mar-2024

Google ScholarTM

Check


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.