English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/18774
Compartir / Impacto:
Estadísticas
Add this article to your Mendeley library MendeleyBASE
Citado 17 veces en Web of Knowledge®  |  Ver citas en Google académico
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Título

Structure of deviations from optimality in biological systems

AutorPérez-Escudero, Alfonso ; Rivera-Alba, Marta ; García de Polavieja, Gonzalo
Palabras claveCaenorhabditis elegans
Escherichia coli
Evolution
Neuroanatomy
Optimization
Fecha de publicación16-nov-2009
EditorNational Academy of Sciences (U.S.)
CitaciónProc. Natl. Acad. Sci. USA (PNAS) 106(46): 19292-19297(2009)
ResumenOptimization theory has been used to analyze evolutionary adaptation. This theory has explained many features of biological systems, from the genetic code to animal behavior. However, these systems show important deviations from optimality. Typically, these deviations are large in some particular components of the system, whereas others seem to be almost optimal. Deviations from optimality may be due to many factors in evolution, including stochastic effects and finite time, that may not allow the system to reach the ideal optimum. However, we still expect the system to have a higher probability of reaching a state with a higher value of the proposed indirect measure of fitness. In systems of many components, this implies that the largest deviations are expected in those components with less impact on the indirect measure of fitness. Here, we show that this simple probabilistic rule explains deviations from optimality in two very different biological systems. In Caenorhabditis elegans, this rule successfully explains the experimental deviations of the position of neurons from the configuration of minimal wiring cost. In Escherichia coli, the probabilistic rule correctly obtains the structure of the experimental deviations of metabolic fluxes from the configuration that maximizes biomass production. This approach is proposed to explain or predict more data than optimization theory while using no extra parameters. Thus, it can also be used to find and refine hypotheses about which constraints have shaped biological structures in evolution.
Versión del editorhttp://www.pnas.org/cgi/doi/10.1073/pnas.0905336106
URIhttp://hdl.handle.net/10261/18774
DOI10.1073/pnas.0905336106
ISSN0027-8424
Aparece en las colecciones: (CFMAC-IO) Artículos
(IC) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
pnas.pdf685,66 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 



NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.