English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/187517
logo share SHARE   Add this article to your Mendeley library MendeleyBASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:


Standardization methods for the synthesis of single-core and multi-core magnetic nanoparticles for medical applications

AuthorsGavilán, Helena ; Costo, Rocío ; Heinke, D.; Sugunan, A.; Sommertune, J.; Fornara, A.; Gehrke, N.; Grüttner, C.; Westphal, F.; Veintemillas-Verdaguer, S. ; Johansson; Morales, M. P.
Issue Date2017
CitationInternational Magnetics Conference (2017)
AbstractThe number of biomedical applications using colloidal magnetic iron oxide nanoparticles has been increasing exponentially over the past few years [1]. Several approaches exist to obtain single-core and multi-core particles but the production of particles with good control of the number of magnetic cores per particle, and the degree of polydispersity of both, particle and core sizes is still a difficult task [2-5]. In addition, the magnetic properties of the nanoparticles may change significantly depending on their aggregation degree (and further agglomeration), which depends to a large extent on the synthesis method [6]. The complexity of the problem of understanding the different magnetic properties of single-core and multi-core nanoparticles underlies the importance of reliable synthesis methods able to reproduce nanoparticle size, shape and structural homogeneity. Here, we present different synthesis strategies in organic, polyol and aqueous media for colloidal single-core and multi-core iron oxide nanoparticles for biomedical applications (Fig. 1). We explore the factors determining the monodispersity in terms of size and shape and the core assembly, and discuss their implication on the resulting structural, colloidal and magnetic properties. We will show that reliable and reproducible analysis methods are also needed to characterize the different magnetic particle systems [7]. For example, in order to compare size parameters precisely determined from different methods and models, it is crucial to establish standardized analysis methods and models to extract reliable parameters from the data, which are necessary both for defining magnetic nanoparticle systems and for quality control during the synthesis of magnetic nanoparticles. Many parameters of the synthesis procedure may have a strong effect on the particles obtained, including temperature, reaction time, reagent concentrations, and stirring conditions. This is one of the reasons why scaling-up of some of these synthesis routes is extremely complicated. Indeed, one of the difficulties that particle synthesis faces is batch-to batch reproducibility. Other important difficulty is the fundamental and pressing need to develop more sustainable protocols, using less toxic reagents in a more efficacious manner.
DescriptionOral presentation given at the International Magnetics Conference (INTERMAG Europe 2017), held in Dublin (Ireland) on April 24-28th, 2017.
Appears in Collections:(ICMM) Comunicaciones congresos
Files in This Item:
File Description SizeFormat 
accesoRestringido.pdf15,38 kBAdobe PDFThumbnail
Show full item record
Review this work

WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.