Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/186906
COMPARTIR / EXPORTAR:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Título

Orbital-dependent Fermi surface shrinking as a fingerprint of nematicity in FeSe

AutorFanfarillo, Laura; Mansart, Joseph; Toulemonde, Pierre; Cercellier, Herve; Fèvre, Patrick le; Bertran, François; Valenzuela, Belén CSIC ORCID; Benfatto, Lara; Brouet, Véronique
Fecha de publicación15-oct-2016
EditorAmerican Physical Society
CitaciónPhysical Review - Section B - Condensed Matter 94(15): 155138 (2016)
ResumenA large anisotropy in the electronic properties across a structural transition in several correlated systems has been identified as the key manifestation of electronic nematic order, breaking rotational symmetry. In this context, FeSe is attracting tremendous interest, since electronic nematicity develops over a wide range of temperatures, allowing accurate experimental investigation. Here we combine angle-resolved photoemission spectroscopy and theoretical calculations based on a realistic multiorbital model to unveil the microscopic mechanism responsible for the evolution of the electronic structure of FeSe across the nematic transition. We show that the self-energy corrections due to the exchange of spin fluctuations between hole and electron pockets are responsible for an orbital-dependent shrinking of the Fermi surface that affects mainly the xz/yz parts of the Fermi surface. This result is consistent with our experimental observation of the Fermi surface in the high-temperature tetragonal phase, which includes the xy electron sheet that was not clearly resolved before. In the low-temperature nematic phase, we experimentally confirm the appearance of a large (∼50 meV) xz/yz splitting. It can be well reproduced in our model by assuming a moderate splitting between spin fluctuations along the x and y crystallographic directions. Our mechanism shows how the full entanglement between orbital and spin degrees of freedom can make a spin-driven nematic transition equivalent to an effective orbital order.
Versión del editorhttps://doi.org/10.1103/PhysRevB.94.155138
URIhttp://hdl.handle.net/10261/186906
DOI10.1103/PhysRevB.94.155138
Identificadoresdoi: 10.1103/PhysRevB.94.155138
e-issn: 1550-235X
issn: 1098-0121
Aparece en las colecciones: (ICMM) Artículos




Ficheros en este ítem:
Fichero Descripción Tamaño Formato
accesoRestringido.pdf15,38 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo

CORE Recommender

SCOPUSTM   
Citations

100
checked on 18-abr-2024

WEB OF SCIENCETM
Citations

95
checked on 19-feb-2024

Page view(s)

182
checked on 19-abr-2024

Download(s)

26
checked on 19-abr-2024

Google ScholarTM

Check

Altmetric

Altmetric


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.