English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/185799
Share/Impact:
Statistics
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE
Exportar a otros formatos:

Title

Spatial and chemical patterns of PM10 in road dust deposited in urban environment

AuthorsAmato, Fulvio ; Pandolfi, Marco ; Viana, Mar ; Querol, Xavier ; Alastuey, Andrés ; Moreno, Teresa
KeywordsDeposition
Issue DateMar-2009
PublisherElsevier
CitationAtmospheric Environment 43 (9): 1650-1659 (2009)
AbstractRecent research interest has been focused on road dust resuspension as one of the major sources of atmospheric particulate matter in an urban environment. Given the dearth of studies on the variability of the PM10 fraction of road deposited sediments, our understanding of the main factors controlling this pollutant is incomplete. In the present study a new sampling methodology was devised and applied to collect PM10 deposited mass from 1 m2 of road pavement. PM10 road dust fraction was sampled directly from active traffic lanes at 23 sampling sites during a campaign in Barcelona (Spain) in June 2007. The aim of the study was to gain more insight into the variability of mass and chemistry of road dust in different urban environments, such as the city centre, ring roads, and locations nearby demolition/construction sites. The city centre showed values of PM10 road dust within a range of 3-23 mg m-2, whereas levels reached 24-80 mg m-2 in locations affected by transport of uncovered heavy trucks. The largest dust loads were measured in the proximity of demolition/construction sites and the harbor entry with values up to 328 mg m-2. The city centre road dust profiles (%) were enriched in OC, EC, Fe, S, Cu, Zn, Mn, Cr, Sb, Sn, Mo, Zr, Hf, Ge, Ba, Pb, Bi, SO4 2-, NO3 -, Cl- and NH4 +, but several crustal components such as Ca, Ti, Na, and Mg were also considerably concentrated. Locations affected by construction and demolition activities had high levels of crustal components such as Ca, Li, Sc, Sr, Rb and also As whereas ring roads, characterized by a higher load of uncovered heavy trucks showed an intermediate composition. Levels of PM10 components per area were also evaluated to quantify the resuspendable amount of each element from 1 m2. In the inner city environment mean values of 1363 μg Ca m-2, 816 μg OC m-2, 239 μg EC m-2, 13 μg Cu m-2, 12 μg Zn m-2, 1.9 μg Sb m-2 and 2.0 μg Pb m-2, in PM10 in all cases, were registered. Moreover the deposited PM load at demolition/construction sites acts as a reservoir or trap for traffic-related particles, which gives rise to large amounts of hazardous pollutants, available for resuspension. © 2008 Elsevier Ltd. All rights reserved.
Publisher version (URL)https://doi.org/10.1016/j.atmosenv.2008.12.009
URIhttp://hdl.handle.net/10261/185799
DOIhttp://dx.doi.org/10.1016/j.atmosenv.2008.12.009
Appears in Collections:(IDAEA) Artículos
Files in This Item:
File Description SizeFormat 
Spatial and chemical patterns of PM10 in road dust deposited in urban environment.pdf801,48 kBAdobe PDFThumbnail
View/Open
Show full item record
Review this work
 


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.