Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/184875
COMPARTIR / EXPORTAR:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Título

Complete Ca/Cu cycle for H2 production via CH4 sorption enhanced reforming in a Lab-Scale fixed bed reactor

AutorDíez-Martín, Laura CSIC ORCID; López Sebastián, José Manuel CSIC ORCID ; Fernández García, José Ramón CSIC ORCID ; Martínez Berges, Isabel; Grasa Adiego, Gemma CSIC ORCID ; Murillo Villuendas, Ramón CSIC ORCID
Palabras claveCH4 sorption enhanced reforming
Fixed bed reactor
Pressurized H2 production
Ca/Cu cycle
CO2 capture
Fecha de publicación15-jun-2018
EditorElsevier BV
CitaciónChemical Engineering Journal 350: 1010-1021 (2018)
ResumenThe three main reaction stages of a H2 production process based on the combination of the CaO/CaCO3 and Cu/CuO loops have been experimentally studied in a lab scale fixed bed reactor. The solid bed contained the three functional materials required to run the process, namely a commercial Ni-based catalyst, a CaO-Ca12Al14O33 CO2 sorbent and a CuO-Al2O3 material in a proportion that resulted in a bed with 43.3% wt. CuO, 25.6% wt. CaO and 1.7% wt. Ni. The system was able to convert 13.5 kg CH4 h−1 kg Ni−1, at 675 °C producing a gas stream with a 93.5% vol. H2 at 10 bar. The Cu-based material presented high oxidation kinetics, being totally converted in a narrow reaction front with a highly diluted air stream at 10 bar. The Cu-based material presented also fast reduction kinetics and it was completely converted with a fuel gas with typical composition of a Steam Methane Reforming stage at high temperature. A Cu/Ca molar ratio of 2 allowed for calcination efficiencies over 85% molar basis at the CO and H2 break-through, and 95% of the CO2 from CaCO3 exited the reactor at CH4 break-through. The experimental results have been validated with an existing pseudo homogeneous reactor model that had been developed in previous works for the three reaction stages. The model was able to predict product gas compositions, bed breakthrough, and temperature profiles along bed.
Descripción7 Figures, 2 Tables.-- © 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/
URIhttp://hdl.handle.net/10261/184875
DOI10.1016/j.cej.2018.06.049
Identificadoresdoi: 10.1016/j.cej.2018.06.049
issn: 1385-8947
Aparece en las colecciones: (INCAR) Artículos
(ICB) Artículos




Ficheros en este ítem:
Fichero Descripción Tamaño Formato
CEJ_v350_1010-1021_2018.pdfArtículo principal696,61 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo

CORE Recommender

SCOPUSTM   
Citations

25
checked on 14-mar-2024

WEB OF SCIENCETM
Citations

22
checked on 26-feb-2024

Page view(s)

341
checked on 18-mar-2024

Download(s)

233
checked on 18-mar-2024

Google ScholarTM

Check

Altmetric

Altmetric


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.