English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/184844
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

Optimizing accuracy and computational cost in theoretical squaramide catalysis: the Henry reaction

AuthorsAlegre-Requena, Juan V. ; Marqués-López, Eugenia ; Herrera, Raquel P.
Issue Date2017
CitationChemistry - A European Journal 23(61): 15336-15347 (2017)
AbstractThis study represents the first example where the accuracy of different combinations of density functional theory (DFT) methods and basis sets have been compared in squaramide catalysis. After an optimization process of the precision obtained and the computational time required in the computational calculations, highly precise results were achieved compared to the experimental outcomes while requiring the least amount of time possible. Here, we have explored computationally and experimentally the mechanism of the squaramide‐catalyzed Henry reaction. This is a complex reaction of about 100 atoms and a great number of diverse non‐covalent interactions. Moreover, this research is one of the scarce examples where the organocatalyst acts in a trifunctional manner and is the first investigation in which a trifunctional squaramide catalyst has been employed. Functional ωB97X‐D showed the best results when used with different versions of the 6‐311 basis sets, leading to highly accurate calculations of the outcomes of the Henry reaction when using nine aldehydes with different structural characteristics. Furthermore, in these relatively large systems, the use of a split‐valence triple‐zeta basis set saves a large amount of time compared with using larger basis sets that are sometimes employed in organocatalytic studies, such as the TZV and Def2TZV basis set families.
Publisher version (URL)https://doi.org/10.1002/chem.201702841
Appears in Collections:(ISQCH) Artículos
Files in This Item:
File Description SizeFormat 
optimiHenry.pdf3,15 MBAdobe PDFThumbnail
Show full item record
Review this work

Related articles:

WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.