English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/18243
Compartir / Impacto:
Add this article to your Mendeley library MendeleyBASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL

Late Holocene history of the rainfall in the NW Iberian peninsula—Evidence from a marine record

AutorBernárdez, Patricia ; González-Álvarez, R.; Francés, G.; Prego, R. ; Bárcena, M. A.; Romero, Oscar E.
Palabras clavePaleoclimatology
Late Holocene
North Atlantic Oscillation
Diatom assemblages
NW Iberian Peninsula
Fecha de publicaciónjul-2008
CitaciónJournal of Marine Systems 72(1-4): 366-382 (2008)
ResumenThis study reconstructs climatic variability over the last 4700 yr in the NW Iberian Peninsula on the basis of lithological, sedimentological, biogeochemical, micropaleontological (diatoms and biosiliceous compounds) and AMS 14C analyses conducted in a gravity core retrieved from the Galician continental shelf. The core was recovered at the Galicia Mud Patch, a muddy sedimentary body highly influenced by the terrestrial supply of the Miño and Douro rivers, and thus controlled by the rainfall variations over the catchment area. River plume transports the lithogenic and continental-derived compounds to the shelf area allowing us to recognize several periods of terrestrial/marine influence. These periods are well correlated with the lithological units identified. Coarser sediments, high values of Ca/Al, low values of Fe, Al and lithogenic Si (LSi) are representative of the marine-influenced periods. These stages are related to dry conditions and winds coming from the NE under a NAO positive-like phase. Terrestrial-influenced stages are characterized by muddy sediments, with high content of Fe, Al and LSi, freshwater and benthic diatoms, continental-derived organisms (crysophycean cysts and phytoliths) and high amount of land-derived organic matter as reported by the C/N ratios. The influence of NAO positive- and NAO negative-like periods and solar activity are the two mechanisms quoted to explain the climatic variability during the last 4700 years. Proxies for the lithogenic input and terrigenous content (non-organic material) show an increase at around 2000–1800 cal. yr BP, linked to the warmer conditions and high precipitation patterns during the Roman Warm Period, and soil erosion due to forest degradation and other anthropic activities. A strong river flow event is recorded in shelf sediments during 800–500 cal. yr BP. A pervasive NAO negative-like period, and the high irradiance registered during the Grand Solar Maximum (GSM) controlled the precipitation and induced a high run-off and riverine influx during this event.
DescripciónReceived 11 July 2006; revised 9 March 2007; accepted 14 March 2007. Available online 3 December 2007. 17 pages, 3 tables, 6 figures.
Versión del editorhttp://dx.doi.org/10.1016/j.jmarsys.2007.03.009
Aparece en las colecciones: (IACT) Artículos
(IIM) Artículos
Ficheros en este ítem:
No hay ficheros asociados a este ítem.
Mostrar el registro completo

NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.