English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/1822
Compartir / Impacto:
Estadísticas
Add this article to your Mendeley library MendeleyBASE
Ver citas en Google académico
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar otros formatos: Exportar EndNote (RIS)Exportar EndNote (RIS)Exportar EndNote (RIS)
Título : Accuracy vs. Simplicity: A Complex Trade-Off
Autor : Aragonés, Enriqueta; Gilboa, Itzhak; Postlewaite, Andrew; Schmeidler, David
Fecha de publicación : ene-2003
Serie : UFAE and IAE Working Papers
564.03
Resumen: Inductive learning aims at finding general rules that hold true in a database. Targeted learning seeks rules for the predictions of the value of a variable based on the values of others, as in the case of linear or non-parametric regression analysis. Non-targeted learning finds regularities without a specific prediction goal. We model the product of non-targeted learning as rules that state that a certain phenomenon never happens, or that certain conditions necessitate another. For all types of rules, there is a trade-off between the rule's accuracy and its simplicity. Thus rule selection can be viewed as a choice problem, among pairs of degree of accuracy and degree of complexity. However, one cannot in general tell what is the feasible set in the accuracy-complexity space. Formally, we show that finding out whether a point belongs to this set is computationally hard. In particular, in the context of linear regression, finding a small set of variables that obtain a certain value of R2 is computationally hard. Computational complexity may explain why a person is not always aware of rules that, if asked, she would find valid. This, in turn, may explain why one can change other people's minds (opinions, beliefs) without providing new information.
Descripción : Earlier versions of this paper circulated under the title “From Cases to Rules: Induction and Regression.”
URI : http://hdl.handle.net/10261/1822
Aparece en las colecciones: (IAE) Informes y documentos de trabajo
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
56403.pdf373,07 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.