English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/181865
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:


Development of a macroporous ceramic passive sampler for the monitoring of cytostatic drugs in water

AuthorsFranquet Griell, Helena; Pueyo, Victor; Silva-Treviño, J.; Orera, V. M.; Lacorte Bruguera, Silvia
KeywordsCeramic passive sampler
Cytostatic drugs
Time average or cumulative monitoring
Water contaminants
Issue Date2017
CitationChemosphere 182: 681-690 (2017)
AbstractThe aim of this study was to develop and calibrate a macroporous ceramic passive sampler (MCPS) for the monitoring of anticancer drugs in wastewater. This system was designed by the Spanish Research Council (CSIC) and consists in a porous ceramic tube to allow a high diffusion of contaminants. The MCPS has been calibrated for 16 cytostatic drugs over time periods up to 9 d in spiked water under controlled laboratory conditions. Optimal uptake was accomplished for 7 compounds, namely ifosfamide, cyclophosphamide, capecitabine, prednisone, megestrol, cyproterone and mycophenolic acid, whereas cytarabine was not adsorbed in the receiving phase and the rest were hydrolyzed over the deployment period. The sampling rate for these 7 compounds was between 0.825 and 3.350 mL day-1 and the diffusion coefficients varied from 1.01E-07 to 4.12E-07 cm2 s-1. To prove the applicability of the MCPSs, samplers (n = 3) were deployed in influent and effluent waters of a WWTP for a period of 6 d and results were compared to grab sampling and extraction with Solid Phase Extraction (SPE). In influent waters, MCPS were clogged due to the high amount of suspended solids in these waters. In effluents, MCPS detected cyclophosphamide and mycophenolic acid at concentrations of 19 ± 3 and 136 ± 28 ng L-1 with a good agreement with the levels obtained by grab sampling. The study discusses the use and performance of the MCPS for the monitoring of stable cytostatic compounds in a complex matrix such as wastewater.
Publisher version (URL)https://doi.org/10.1016/j.chemosphere.2017.05.051
Appears in Collections:(IDAEA) Artículos
(ICMA) Artículos
Files in This Item:
File Description SizeFormat 
accesoRestringido.pdf59,24 kBAdobe PDFThumbnail
Show full item record
Review this work

Related articles:

WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.