Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/181847
COMPARTIR / EXPORTAR:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Campo DC Valor Lengua/Idioma
dc.contributor.authorPérez-Álvarez, María José-
dc.contributor.authorGonzález, Mario-
dc.contributor.authorBenito-Cuesta, Irene-
dc.contributor.authorWandosell, Francisco-
dc.date.accessioned2019-05-21T08:38:51Z-
dc.date.available2019-05-21T08:38:51Z-
dc.date.issued2018-02-15-
dc.identifierdoi: 10.3389/fnins.2018.00060-
dc.identifierissn: 1662-453X-
dc.identifier.citationFrontiers in Neuroscience 12 (2018)-
dc.identifier.urihttp://hdl.handle.net/10261/181847-
dc.description.abstractIntense efforts are being undertaken to understand the pathophysiological mechanisms triggered after brain ischemia and to develop effective pharmacological treatments. However, the underlying molecular mechanisms are complex and not completely understood. One of the main problems is the fact that the ischemic damage is time-dependent and ranges from negligible to massive, involving different cell types such as neurons, astrocytes, microglia, endothelial cells, and some blood-derived cells (neutrophils, lymphocytes, etc.). Thus, approaching such a complicated cellular response generates a more complex combination of molecular mechanisms, in which cell death, cellular damage, stress and repair are intermixed. For this reason, animal and cellular model systems are needed in order to dissect and clarify which molecular mechanisms have to be promoted and/or blocked. Brain ischemia may be analyzed from two different perspectives: that of oxygen deprivation (hypoxic damage per se) and that of deprivation of glucose/serum factors. For investigations of ischemic stroke, middle cerebral artery occlusion (MCAO) is the preferred in vivo model, and uses two different approaches: transient (tMCAO), where reperfusion is permitted; or permanent (pMCAO). As a complement to this model, many laboratories expose different primary cortical neuron or neuronal cell lines to oxygen-glucose deprivation (OGD). This ex vivo model permits the analysis of the impact of hypoxic damage and the specific response of different cell types implicated in vivo, such as neurons, glia or endothelial cells. Using in vivo and neuronal OGD models, it was recently established that mTORC1 (mammalian Target of Rapamycin Complex-1), a protein complex downstream of PI3K-Akt pathway, is one of the players deregulated after ischemia and OGD. In addition, neuroprotective intervention either by estradiol or by specific AT2R agonists shows an important regulatory role for the mTORC1 activity, for instance regulating vascular endothelial growth factor (VEGF) levels. This evidence highlights the importance of understanding the role of mTORC1 in neuronal death/survival processes, as it could be a potential therapeutic target. This review summarizes the state-of-the-art of the complex kinase mTORC1 focusing in upstream and downstream pathways, their role in central nervous system and their relationship with autophagy, apoptosis and neuroprotection/neurodegeneration after ischemia/hypoxia.-
dc.description.sponsorshipEuropean Union (EU-FP7-2009-CT222887), Proyectos I+D+i, SAF2015-70368-R, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED )(Proyectos Colaborativos- PI2016/01), and by an institutional grant from the Fundación Ramón Areces to CBMSO and Fondos FEDER-
dc.relation.isversionofPublisher's version-
dc.rightsopenAccess-
dc.subjectNeuroinflammation-
dc.subjectMCAO-
dc.subjectGlia stress response-
dc.subjectNeuronal stress response-
dc.subjectStroke-
dc.subjectAutophagy-
dc.subjectPI3K-Akt-
dc.subjectSignaling-
dc.titleRole of mTORC1 controlling proteostasis after brain ischemia-
dc.typeartículo-
dc.identifier.doi10.3389/fnins.2018.00060-
dc.date.updated2019-05-21T08:38:51Z-
dc.description.versionPeer Reviewed-
dc.language.rfc3066eng-
dc.rights.licensehttps://creativecommons.org/licenses/by/4.0/-
dc.contributor.funderCentro Investigación Biomédica en Red Enfermedades Neurodegenerativas (España)-
dc.contributor.funderFundación Ramón Areces-
dc.contributor.funderEuropean Commission-
dc.relation.csic-
dc.identifier.funderhttp://dx.doi.org/10.13039/100008054es_ES
dc.identifier.funderhttp://dx.doi.org/10.13039/501100000780es_ES
dc.identifier.pmid29497356-
dc.type.coarhttp://purl.org/coar/resource_type/c_6501es_ES
item.openairetypeartículo-
item.grantfulltextopen-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
Aparece en las colecciones: (CBM) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato
WandosellFG_RoleOfmTORC1.pdf1,38 MBAdobe PDFVista previa
Visualizar/Abrir
Show simple item record

CORE Recommender

PubMed Central
Citations

25
checked on 22-abr-2024

SCOPUSTM   
Citations

38
checked on 23-abr-2024

WEB OF SCIENCETM
Citations

31
checked on 28-feb-2024

Page view(s)

233
checked on 23-abr-2024

Download(s)

140
checked on 23-abr-2024

Google ScholarTM

Check

Altmetric

Altmetric


Artículos relacionados:


Este item está licenciado bajo una Licencia Creative Commons Creative Commons