English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/181840
Share/Impact:
Statistics
logo share SHARE   Add this article to your Mendeley library MendeleyBASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE
Exportar a otros formatos:

DC FieldValueLanguage
dc.contributor.authorBuencuerpo, Jerónimoes_ES
dc.contributor.authorTorné, Lorenaes_ES
dc.contributor.authorÁlvaro Bruna, Raqueles_ES
dc.contributor.authorLlorens Montolio, José Manueles_ES
dc.contributor.authorDotor, María Luisaes_ES
dc.contributor.authorRipalda, José Maríaes_ES
dc.date.accessioned2019-05-21T07:52:09Z-
dc.date.available2019-05-21T07:52:09Z-
dc.date.issued2017-05-01-
dc.identifier.citationCPV 13 (2017)es_ES
dc.identifier.urihttp://hdl.handle.net/10261/181840-
dc.descriptionTrabajo presentado en el 13th International Conference on Concentrator Photovoltaics (CPV-13), celebrado en Ottawa (Canadá), del 1 al 3 de mayo de 2017es_ES
dc.description.abstractNano-structuring the surfaces of solar cells presents the opportunity to engineer the optical response with more degrees of freedom than using only flat layers. Particularly, it allows to exploit diffraction effects not present in conventional antireflective coatings (ARCs) based on destructive interference [1] and gradual index matching [2]. Diffraction does not occur if the grating period is smaller than the light wavelength. But the wavelength is much shorter inside the solar cell than in air or glass, thus by placing the grating at an interface with a high refractive index contrast, and choosing the grating period to be slightly smaller than the shortest wavelength of interest, all the light diffracted by the grating (by addition of a reciprocal lattice wave-vector) propagates forward into the solar cell, reducing reflection [3,4]. The intensity of the effect depends on the scattering efficiency of the grating, which in turn depends on the refractive index contrast, among other factors. A viable approach to overcome the difficulty of finding materials with the appropriate refractive indexes is based on porous or mixed layers, but the maximum usable refractive index is still limited by the choice of materials with low absorption in the wavelength range of interest.es_ES
dc.description.sponsorshipWe acknowledge financial support by MINECO (TEC2015-64189-C3-2-R) and CAM (S2013/MAE-2780).es_ES
dc.language.isoenges_ES
dc.relationMINECO/ICTI2013-2016/TEC2015-64189-C3-2-Res_ES
dc.relationS2013/MAE-2780/MADRID-PV-CMes_ES
dc.rightsopenAccesses_ES
dc.titleAntireflective nanostructures for CPVes_ES
dc.typecomunicación de congresoes_ES
dc.description.peerreviewedPeer reviewedes_ES
dc.contributor.funderMinisterio de Economía y Competitividad (España)es_ES
dc.contributor.funderComunidad de Madrides_ES
dc.relation.csices_ES
oprm.item.hasRevisionno ko 0 false*
dc.identifier.funderhttp://dx.doi.org/10.13039/100012818es_ES
dc.identifier.funderhttp://dx.doi.org/10.13039/501100003329es_ES
Appears in Collections:(IMN-CNM) Comunicaciones congresos
Files in This Item:
File Description SizeFormat 
Antireflective Nanostructures_Buencuerpo.pdf812,05 kBAdobe PDFThumbnail
View/Open
Show simple item record
 


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.