English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/181776
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:


Paleoproductivity in the SW Pacific Ocean During the Early Holocene Climatic Optimum

AuthorsBostock, H.; Prebble, J.G.; Cortese, G.; Hayward, B.W.; Calvo, Eva María ; Quirós-Collazos, Lucía ; Kienast, Markus; Kim, K.
Issue DateApr-2019
PublisherAmerican Geophysical Union
CitationPaleoceanography and Paleoclimatology 34(4): 580-599 (2019)
AbstractThe oceans are warming, but it is unclear how marine productivity will be affected under future climate change. In this study we examined a wide range of paleoproductivity proxies along a latitudinal transect (36–58°S) in the SW Pacific during the early Holocene climatic optimum, to explore regional patterns of productivity in a slightly warmer‐than‐present world. During the early Holocene there is a small increase in productivity in the subtropical waters, no change at the subtropical frontal zone, and conflicting evidence in records immediately south of the subtropical front, where an increase is inferred from one core site, but not at the other. Evidence for an increase in productivity in Antarctic Surface Waters, south of the polar front, is also equivocal. We infer a small increase in productivity in subtropical waters, and the ocean just south of the subtropical front was associated with changes in the ocean circulation of the SW Pacific, driven by changes in the Southern Hemisphere Westerly Winds split‐jet structure in this region. The relatively modest warming during the early Holocene climatic optimum in the SW Pacific indicates that this time period may provide an analog for future productivity for the midcentury (2055) under Intergovernmental Panel on Climate Change Representative Concentration Pathway 8.5 or for the end of the century (2100) under Representative Concentration Pathway 4.5. However, higher‐resolution, downscaled models, with realistic Southern Hemisphere Westerly Winds, will be necessary to forecast future productivity for this oceanographically complex region
Description20 pages, 6 figures, 1 table, supporting information https://doi.org/10.1029/2019PA003574.-- The data from this paper will be available at the Pangaea.de database
Publisher version (URL)https://doi.org/10.1029/2019PA003574
Identifiersdoi: 10.1029/2019PA003574
issn: 2572-4517
Appears in Collections:(ICM) Artículos
Files in This Item:
File Description SizeFormat 
Bostock_et_al_2019_postprint.pdf974,96 kBAdobe PDFThumbnail
Show full item record
Review this work

WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.