Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/181493
COMPARTIR / EXPORTAR:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Título

Temperature-dependent thermal and thermoelectric properties of n -type and p -type S c 1 − x M g x N

AutorSaha, Bivas; Pérez Taborda, Jaime Andrés CSIC ORCID; Bahk, Je-Hyeong; Koh, Yee Rui; Shakouri, Ali; Martín-González, Marisol CSIC ORCID ; Sands, Timothy
Fecha de publicación15-feb-2018
EditorAmerican Physical Society
CitaciónPhysical Review - Section B - Condensed Matter 97(8): 085301 (2018)
ResumenScandium Nitride (ScN) is an emerging rocksalt semiconductor with octahedral coordination and an indirect bandgap. ScN has attracted significant attention in recent years for its potential thermoelectric applications, as a component material in epitaxial metal/semiconductor superlattices, and as a substrate for defect-free GaN growth. Sputter-deposited ScN thin films are highly degenerate n-type semiconductors and exhibit a large thermoelectric power factor of∼3.5 × 10−3 W/m-K2 at 600–800 K. Since practical thermoelectric devices require both n- and p-type materials with high thermoelectric figures-of-merit, development and demonstration of highly efficient p-type ScN is extremely important. Recently, the authors have demonstrated p-type Sc1−xMgxN thin film alloys with low MgxNy mole-fractions within the ScN matrix. In this article, we demonstrate temperature dependent thermal and thermoelectric transport properties, including large thermoelectric power factors in both n- and p-type Sc1−xMgxN thin film alloys at high temperatures (up to 850 K). Employing a combination of temperature-dependent Seebeck coefficient, electrical conductivity, and thermal conductivity measurements, as well as detailed Boltzmann transport-based modeling analyses of the transport properties, we demonstrate that p-type Sc1−xMgxN thin film alloys exhibit a maximum thermoelectric power factor of ∼0.8 × 10−3 W/m-K2 at 850 K. The thermoelectric properties are tunable by adjusting the MgxNy mole-fraction inside the ScN matrix, thereby shifting the Fermi energy in the alloy films from inside the conduction band in case of undoped n-type ScN to inside the valence band in highly hole-doped p-type Sc1−xMgxN thin film alloys. The thermal conductivities of both the n- and p-type films were found to be undesirably large for thermoelectric applications. Thus, future work should address strategies to reduce the thermal conductivity of Sc1−xMgxN thin-film alloys, without affecting the power factor for improved thermoelectric performance
Versión del editorhttps://doi.org/10.1103/PhysRevB.97.085301
URIhttp://hdl.handle.net/10261/181493
DOI10.1103/PhysRevB.97.085301
ISSN2469-9950
E-ISSN2469-9969
Aparece en las colecciones: (IMN-CNM) Artículos




Ficheros en este ítem:
Fichero Descripción Tamaño Formato
Temperature-dependent thermal_Saha.pdf2,27 MBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo

CORE Recommender

SCOPUSTM   
Citations

34
checked on 09-mar-2024

WEB OF SCIENCETM
Citations

32
checked on 22-feb-2024

Page view(s)

188
checked on 19-mar-2024

Download(s)

141
checked on 19-mar-2024

Google ScholarTM

Check

Altmetric

Altmetric


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.