Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/181027
COMPARTIR / EXPORTAR:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Título

Ultrafast folding kinetics of WW domains reveal how the amino acid sequence determines the speed limit to protein folding

AutorSzczepaniak, Malwina CSIC ORCID; Iglesias-Bexiga, Manuel CSIC; Cerminara, Michele CSIC ORCID; Sadqi, Mourad CSIC ORCID; Sánchez de Medina-Revilla, Celia; Martínez, José C.; Luque, Irene; Muñoz, Víctor CSIC ORCID
Palabras claveProtein folding
Rate theory
Rate prefactor
Folding mechanisms
Free-energy barrier
Fecha de publicación23-abr-2019
EditorNational Academy of Sciences (U.S.)
CitaciónProceedings of the National Academy of Sciences of the United States of America 116 (17) 8137-8142 (2019)
ResumenProtein (un)folding rates depend on the free-energy barrier separating the native and unfolded states and a prefactor term, which sets the timescale for crossing such barrier or folding speed limit. Because extricating these two factors is usually unfeasible, it has been common to assume a constant prefactor and assign all rate variability to the barrier. However, theory and simulations postulate a protein-specific prefactor that contains key mechanistic information. Here, we exploit the special properties of fast-folding proteins to experimentally resolve the folding rate prefactor and investigate how much it varies among structural homologs. We measure the ultrafast (un)folding kinetics of five natural WW domains using nanosecond laser-induced temperature jumps. All five WW domains fold in microseconds, but with a 10-fold difference between fastest and slowest. Interestingly, they all produce biphasic kinetics in which the slower phase corresponds to reequilibration over the small barrier (<3 RT) and the faster phase to the downhill relaxation of the minor population residing at the barrier top [transition state ensemble (TSE)]. The fast rate recapitulates the 10-fold range, demonstrating that the folding speed limit of even the simplest all-β fold strongly depends on the amino acid sequence. Given this fold’s simplicity, the most plausible source for such prefactor differences is the presence of nonnative interactions that stabilize the TSE but need to break up before folding resumes. Our results confirm long-standing theoretical predictions and bring into focus the rate prefactor as an essential element for understanding the mechanisms of folding.
Descripción6 p.-5 fig.
Versión del editorhttps://doi.org/10.1073/pnas.1900203116
URIhttp://hdl.handle.net/10261/181027
DOI10.1073/pnas.1900203116
ISSN0027-8424
E-ISSN1091-6490
Aparece en las colecciones: (CIB) Artículos




Ficheros en este ítem:
Fichero Descripción Tamaño Formato
restringido.pdfRestringido20,59 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo

CORE Recommender

PubMed Central
Citations

6
checked on 23-abr-2024

SCOPUSTM   
Citations

12
checked on 19-abr-2024

WEB OF SCIENCETM
Citations

12
checked on 29-feb-2024

Page view(s)

179
checked on 23-abr-2024

Download(s)

124
checked on 23-abr-2024

Google ScholarTM

Check

Altmetric

Altmetric


Artículos relacionados:


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.