Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/181011
COMPARTIR / EXPORTAR:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Título

Exploring new mechanisms for effective antimicrobial materials: Electric contact-killing based on multiple schottky barriers

AutorLucas-Gil, Eva de; Jiménez Reinosa, Julián CSIC ORCID ; Neuhaus, Kerstin; Vera Londoño, Liliana Patricia CSIC ORCID; Martín-González, Marisol CSIC ORCID ; Fernández Lozano, José Francisco CSIC ORCID ; Rubio Marcos, Fernando CSIC ORCID
Palabras claveAction mechanism
Antimicrobial activity
Microstructure
Physical interactions
Surface charge orientation
ZnO
Fecha de publicación14-jul-2017
EditorAmerican Chemical Society
CitaciónACS Applied Materials and Interfaces 9(31): 26219-26225 (2017)
ResumenThe increasing threat of multidrug-resistance organisms is a cause for worldwide concern. Progressively microorganisms become resistant to commonly used antibiotics, which are a healthcare challenge. Thus, the discovery of new antimicrobial agents or new mechanisms different from those used is necessary. Here, we report an effective and selective antimicrobial activity of microstructured ZnO (Ms-ZnO) agent through the design of a novel star-shaped morphology, resulting in modulation of surface charge orientation. Specifically, we find that Ms-ZnO particles are composed of platelet stacked structure, which generates multiple Schottky barriers due to the misalignment of crystallographic orientations. We also demonstrated that this effect allows negative charge accumulation in localized regions of the structure to act as “charged domain walls”, thereby improving the antimicrobial effectiveness by electric discharging effect. We use a combination of field emission scanning electron microscopy (FE-SEM), SEM-cathodoluminescence imaging, and Kelvin probe force microscopy (KPFM) to determine that the antimicrobial activity is a result of microbial membrane physical damage caused by direct contact with the Ms-ZnO agent. It is important to point out that Ms-ZnO does not use the photocatalysis or the Zn2+ released as the main antimicrobial mechanism, so consequently this material would show low toxicity and robust stability. This approach opens new possibilities to understand both the physical interactions role as main antimicrobial mechanisms and insight into the coupled role of hierarchical morphologies and surface functionality on the antimicrobial activity.
Versión del editorhttp://dx.doi.org/10.1021/acsami.7b09695
URIhttp://hdl.handle.net/10261/181011
DOI10.1021/acsami.7b09695
ISSN1944-8244
E-ISSN1944-8252
Aparece en las colecciones: (IMN-CNM) Artículos
(ICV) Artículos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato
PostPrint_acsami.7b09695.pdf1,43 MBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo

CORE Recommender

SCOPUSTM   
Citations

18
checked on 11-abr-2024

WEB OF SCIENCETM
Citations

16
checked on 23-feb-2024

Page view(s)

249
checked on 19-abr-2024

Download(s)

312
checked on 19-abr-2024

Google ScholarTM

Check

Altmetric

Altmetric


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.