English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/18070
COMPARTIR / IMPACTO:
Estadísticas
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:
Título

Visual Registration Method for a Low Cost Robot

AutorAldavert, David; Ramisa, Arnau; Toledo, Ricardo; López de Mántaras, Ramón
Palabras claveMobile Robot
Registration
Robot Localization
Bag of features
Fecha de publicación2009
EditorSpringer
CitaciónComputer Vision Systems, 7th International Conference on Computer Vision Systems, ICVS 2009 Liège, Belgium, October 13-15, 2009. Proceedings. Lecture Notes in Computer Science Vol. 5815, p.p.: 204-214, Springer Verlag, 2009.
ResumenAn autonomous mobile robot must face the correspondence or data association problem in order to carry out tasks like place recognition or unknown environment mapping. In order to put into correspondence two maps, most correspondence methods first extract early features from robot sensor data, then matches between features are searched and finally the transformation that relates the maps is estimated from such matches. However, finding explicit matches between features is a challenging and computationally expensive task. In this paper, we propose a new method to align obstacle maps without searching explicit matches between features. The maps are obtained from a stereo pair. Then, we use a vocabulary tree approach to identify putative corresponding maps followed by a Newton minimization algorithm to find the transformation that relates both maps. The proposed method is evaluated on a typical office dataset showing good performance.
DescripciónThe original publication is available at www.springerlink.com
Versión del editor10.1007/978-3-642-04667-4_21
URIhttp://hdl.handle.net/10261/18070
DOI10.1007/978-3-642-04667-4_21
ISBN978-3-642-04666-7
Aparece en las colecciones: (IIIA) Comunicaciones congresos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
icvs09_LNAI5815_Al_Ra_To_RLM.pdf1,28 MBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.