Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/179829
COMPARTIR / EXPORTAR:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Título

Base excision repair plays an important role in the protection against nitric oxide- and in vivo-induced DNA damage in Trypanosoma brucei

AutorYagüe-Capilla, Miriam; García-Caballero, Daniel; Aguilar-Pereyra, Fernando; Castillo Acosta, Víctor M.; Ruiz-Pérez, Luis Miguel; Vidal, Antonio E. CSIC ORCID ; González-Pacanowska, Dolores
Palabras claveTrypanosoma brucei
Nitric oxide
Base excision repair
Uracil-DNA glycosylase
Fecha de publicación1-feb-2019
EditorElsevier
CitaciónFree Radical Biology and Medicine
ResumenUracil-DNA glycosylase (UNG) initiates the base excision repair pathway by excising uracil from DNA. We have previously shown that Trypanosoma brucei cells defective in UNG exhibit reduced infectivity thus demonstrating the relevance of this glycosylase for survival within the mammalian host. In the early steps of the immune response, nitric oxide (NO) is released by phagocytes, which in combination with oxygen radicals produce reactive nitrogen species (RNS). These species can react with DNA generating strand breaks and base modifications including deaminations. Since deaminated cytosines are the main substrate for UNG, we hypothesized that the glycosylase might confer protection towards nitrosative stress. Our work establishes the occurrence of genotoxic damage in Trypanosoma brucei upon exposure to NO in vitro and shows that deficient base excision repair results in increased levels of damage in DNA and a hypermutator phenotype. We also evaluate the incidence of DNA damage during infection in vivo and show that parasites recovered from mice exhibit higher levels of DNA strand breaks, base deamination and repair foci compared to cells cultured in vitro. Notably, the absence of UNG leads to reduced infectivity and enhanced DNA damage also in animal infections. By analysing mRNA and protein levels, we found that surviving UNG-KO trypanosomes highly express tryparedoxin peroxidase involved in trypanothione/tryparedoxin metabolism. These observations suggest that the immune response developed by the host enhances the activation of genes required to counteract oxidative stress and emphasize the importance of DNA repair pathways in the protection to genotoxic and oxidative stress in trypanosomes.
URIhttp://hdl.handle.net/10261/179829
DOI10.1016/j.freeradbiomed.2018.11.025
ISSN0891-5849
E-ISSN1873-4596
Aparece en las colecciones: (IPBLN) Artículos




Ficheros en este ítem:
Fichero Descripción Tamaño Formato
accesoRestringido.pdf15,35 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo

CORE Recommender

SCOPUSTM   
Citations

6
checked on 20-abr-2024

WEB OF SCIENCETM
Citations

5
checked on 23-feb-2024

Page view(s)

225
checked on 23-abr-2024

Download(s)

29
checked on 23-abr-2024

Google ScholarTM

Check

Altmetric

Altmetric


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.