English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/17821
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

Non-geometric flux vacua, S-duality and algebraic geometry

AutorGuarino, Adolfo ; Weatherill, George James
Palabras claveSuperstring Vacua
Flux compactifications
Fecha de publicación17-feb-2009
EditorInstitute of Physics Publishing
International School for Advanced Studies
CitaciónJournal of High Energy Physics 02(042): (2009)
ResumenThe four dimensional gauged supergravities descending from non-geometric string compactifications involve a wide class of flux objects which are needed to make the theory invariant under duality transformations at the effective level. Additionally, complex algebraic conditions involving these fluxes arise from Bianchi identities and tadpole cancellations in the effective theory. In this work we study a simple T and S-duality invariant gauged supergravity, that of a type IIB string compactified on a Bbb T6/Bbb Z2 × Bbb Z2 orientifold with O3/O7-planes. We build upon the results of recent works and develop a systematic method for solving all the flux constraints based on the algebra structure underlying the fluxes. Starting with the T-duality invariant supergravity, we find that the fluxes needed to restore S-duality can be simply implemented as linear deformations of the gauge subalgebra by an element of its second cohomology class. Algebraic geometry techniques are extensively used to solve these constraints and supersymmetric vacua, centering our attention on Minkowski solutions, become systematically computable and are also provided to clarify the methods.
Descripción39 pages, 10 tables.-- Pre-print archive.
Versión del editorhttp://dx.doi.org/10.1088/1126-6708/2009/02/042
Aparece en las colecciones: (IFT) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
0811.2190v2.pdf421,97 kBAdobe PDFVista previa
Mostrar el registro completo

NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.