English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/177373
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

Efficient Pt electrocatalysts supported onto flavin mononucleotide–exfoliated pristine graphene for the methanol oxidation reaction

AuthorsAyán Varela, Miguel; Ruiz-Rosas, R.; Villar Rodil, Silvia ; Paredes Nachón, Juan Ignacio ; Cazorla-Amorós, D.; Morallón, E.; Martínez Alonso, Amelia ; Díez Tascón, Juan Manuel
KeywordsFuel cell
Methanol oxidation reaction
Metal nanoparticles
Issue Date30-Dec-2016
CitationElectrochimica Acta 231: 386–395 (2017)
AbstractDue to its large surface area, high electrical conductivity as well as mechanical and thermal stability, pristine graphene has the potential to be an excellent support for metal nanoparticles (NPs), but the scarce amount of intrinsic chemical groups/defects in its structure that could act as anchoring sites for the NPs hinders this type of use. Here, a simple strategy based on the stabilization of pristine graphene in aqueous dispersion with the assistance of a low amount of flavin mononucleotide (FMN) is shown to yield a material that combines high electrical conductivity and abundance of extrinsic anchoring sites, so that pristine graphene–metal (Pd and Pt) NP hybrids with good dispersion and metal loading can be obtained from FMN–stabilized graphene. The activity of these hybrids towards the methanol oxidation reaction (MOR) both in acidic and alkaline media is studied by cyclic voltammetry (CV) and their stability investigated by chronoamperometry. The pristine graphene–Pt NP hybrid prepared by this simple, eco–friendly protocol is demonstrated to outperform most previously reported pristine graphene– and reduced graphene oxide–metal NP hybrids as electrocatalyst for the MOR, both in terms of catalytic activity and stability, avoiding at the same time the use of harsh chemicals or complex synthetic routes.
Publisher version (URL)https://doi.org/10.1016/j.electacta.2016.12.177
Appears in Collections:(INCAR) Artículos
Files in This Item:
File Description SizeFormat 
Efficient_Pt_electrocatalysts_Ayán.pdf697,12 kBAdobe PDFThumbnail
Efficient_Pt_electrocatalysts_Ayán_SI.pdfSupplementary Information312,62 kBAdobe PDFThumbnail
Show full item record
Review this work

Related articles:

WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.