English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/177339
logo share SHARE   Add this article to your Mendeley library MendeleyBASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE
Exportar a otros formatos:


Initiation of DNA replication in ColE1 plasmids containing multiple potential origins of replication

AuthorsMartin-Parras, Luis; Hernandez, Pablo ; Martínez-Robles, María Luisa ; Schvartzman, Jorge Bernardo
Issue Date5-Nov-1992
PublisherAmerican Society for Biochemistry and Molecular Biology
CitationThe Journal of Biological Chemistry 267:22496-22505 (1992)
AbstractWe have investigated the frequency of replication origin usage in bacterial plasmids containing more than one potential origin. Escherichia coli recA- cells were selectively transformed with pBR322 monomers, dimers, or trimers. Plasmid DNA was isolated and digested with a restriction enzyme that cut the monomer only once, and the replicative intermediates (RIs) were analyzed by neutral/neutral two-dimensional agarose gel electrophoresis. Evidence for initiation outside the linearized plasmid was found only for oligomers. Moreover, in dimers, the intensity of the signal indicative for external initiation was equivalent to that reflecting internal initiation, whereas it was approximately twice as strong in trimers. To determine whether initiation could occur simultaneously at two origins in a single plasmid, we studied the replication of a neodimer in which both units could be unambiguously distinguished. The results showed that although both origins were equally competent to initiate replication, only one was active per plasmid. These observations strongly suggest that in ColE1 plasmids, replication initiates at a single site even when there are several identical potential origins per plasmid. In addition to the conventional two-dimensional gel patterns, novel specific patterns were observed with intensities that varied from one DNA sample to another. These unique patterns were the result of breakage of the RIs at a replication fork. This type of breakage changes both the mass and shape of RIs. When the entire population of RIs is affected, a new population of molecules is formed that may generate a novel pattern in two-dimensional gels.
Description11 p.-9 fig.
Publisher version (URL)http://www.jbc.org/content/267/31/22496
Appears in Collections:(CIB) Artículos
Files in This Item:
File Description SizeFormat 
J. Biol. Chem.-1992-Martín-Parras-22496-505.pdfArtículo principal6,04 MBAdobe PDFThumbnail
Show full item record
Review this work

WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.