English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/176791
Share/Impact:
Statistics
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

Title

Ovarian function modulates the effects of long-chain polyunsaturated fatty acids on the mouse cerebral cortex

AuthorsHerrera, Jose L.; Fabriàs, Gemma ; Casas, Josefina ; Wandosell, Francisco G.
KeywordsCerebral cortex lipidome
Ovarian hormones
Docosahexaenoic acid (DHA)
Long-chain polyunsaturated fatty acids (LC-PUFAs)
Sphingolipids
Synaptic proteins
Issue Date24-Apr-2018
PublisherFrontiers Media
CitationFrontiers in Cellular Neuroscience 12: 103 (2018)
AbstractDifferent dietary ratios of n−6/n−3 long-chain polyunsaturated fatty acids (LC-PUFAs) may alter brain lipid profile, neural activity, and brain cognitive function. To determine whether ovarian hormones influence the effect of diet on the brain, ovariectomized and sham-operated mice continuously treated with placebo or estradiol were fed for 3 months with diets containing low or high n−6/n−3 LC-PUFA ratios. The fatty acid (FA) profile and expression of key neuronal proteins were analyzed in the cerebral cortex, with intact female mice on standard diet serving as internal controls of brain lipidome composition. Diets containing different concentrations of LC-PUFAs greatly modified total FAs, sphingolipids, and gangliosides in the cerebral cortex. Some of these changes were dependent on ovarian hormones, as they were not detected in ovariectomized animals, and in the case of complex lipids, the effect of ovariectomy was partially or totally reversed by continuous administration of estradiol. However, even though differential dietary LC-PUFA content modified the expression of neuronal proteins such as synapsin and its phosphorylation level, PSD-95, amyloid precursor protein (APP), or glial proteins such as glial fibrillary acidic protein (GFAP), an effect also dependent on the presence of the ovary, chronic estradiol treatment was unable to revert the dietary effects on brain cortex synaptic proteins. These results suggest that, in addition to stable estradiol levels, other ovarian hormones such as progesterone and/or cyclic ovarian secretory activity could play a physiological role in the modulation of dietary LC-PUFAs on the cerebral cortex, which may have clinical implications for post-menopausal women on diets enriched with different proportions of n−3 and n−6 LC-PUFAs. © 2018 Herrera, Ordoñez-Gutierrez, Fabrias, Casas, Morales, Hernandez, Acosta, Rodriguez, Prieto-Valiente, Garcia-Segura, Alonso and Wandosell.
Publisher version (URL)https://doi.org/10.3389/fncel.2018.00103
URIhttp://hdl.handle.net/10261/176791
DOI10.3389/fncel.2018.00103
Appears in Collections:(IQAC) Artículos
Show full item record
Review this work
 

Related articles:


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.