English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/176664
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:


Enhancing enantioselective absorption using dielectric nanospheres

AuthorsHo, Chi-Sing; García-Etxarri, Aitzol ; Zhao, Yang; Dionne, Jennifer
KeywordsDielectric nanoparticles
Mie resonances
Silicon nanoparticles
Chiral molecules
Enantiomer separation
Issue Date2017
PublisherAmerican Chemical Society
CitationACS Photonics 4(2): 197-203 (2017)
AbstractSeparation of enantiomers is crucial to the pharmaceutical and chemical industries, but prevailing chemical methods are economically costly and time-consuming. Illumination with circularly polarized light (CPL) provides a potentially cost-effective and versatile alternative but can achieve only 2% enantiomeric excesses with substantial yield. Here, we theoretically show that high-index dielectric nanoparticles can increase enantiomeric excesses 7 times beyond CPL in free space. Mie theory and a local optimization algorithm indicate that magnetic multipolar Mie resonances supported by submicrometer silicon spheres increase Kuhn's dissymmetry factor 7-fold, compared to CPL in free space. Further, the circular dichroism signal can be enhanced 170-fold. Importantly, these local enhancements maintain the total molecular absorption rate, enabling efficient selective photoexcitation. Even greater enhancements in Kuhn's dissymmetry factor can be achieved with lower loss and higher refractive index nanoparticles. Our results provide a path toward more efficient all-optical chiral resolution techniques.
Identifiersdoi: 10.1021/acsphotonics.6b00701
e-issn: 2330-4022
Appears in Collections:(CFM) Artículos
Files in This Item:
File Description SizeFormat 
accesoRestringido.pdf15,38 kBAdobe PDFThumbnail
Show full item record
Review this work

Related articles:

WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.