English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/17457
Compartir / Impacto:
Estadísticas
Add this article to your Mendeley library MendeleyBASE
Citado 134 veces en Web of Knowledge®  |  Pub MebCentral Ver citas en PubMed Central  |  Ver citas en Google académico
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Título

Novel metaheuristic for parameter estimation in nonlinear dynamic biological systems

AutorRodríguez Fernández, María; Egea, José A. ; Banga, Julio R.
Palabras claveGO
Dynamic biological systems
Fecha de publicación2-nov-2006
EditorBioMed Central
CitaciónBMC Bioinformatics 7:483 (2006)
Resumen[Background] We consider the problem of parameter estimation (model calibration) in nonlinear dynamic models of biological systems. Due to the frequent ill-conditioning and multi-modality of many of these problems, traditional local methods usually fail (unless initialized with very good guesses of the parameter vector). In order to surmount these difficulties, global optimization (GO) methods have been suggested as robust alternatives. Currently, deterministic GO methods can not solve problems of realistic size within this class in reasonable computation times. In contrast, certain types of stochastic GO methods have shown promising results, although the computational cost remains large. Rodriguez-Fernandez and coworkers have presented hybrid stochastic-deterministic GO methods which could reduce computation time by one order of magnitude while guaranteeing robustness. Our goal here was to further reduce the computational effort without loosing robustness.
[Results] We have developed a new procedure based on the scatter search methodology for nonlinear optimization of dynamic models of arbitrary (or even unknown) structure (i.e. black-box models). In this contribution, we describe and apply this novel metaheuristic, inspired by recent developments in the field of operations research, to a set of complex identification problems and we make a critical comparison with respect to the previous (above mentioned) successful methods.
[Conclusion] Robust and efficient methods for parameter estimation are of key importance in systems biology and related areas. The new metaheuristic presented in this paper aims to ensure the proper solution of these problems by adopting a global optimization approach, while keeping the computational effort under reasonable values. This new metaheuristic was applied to a set of three challenging parameter estimation problems of nonlinear dynamic biological systems, outperforming very significantly all the methods previously used for these benchmark problems.
Descripción18 pages, 16 figures, 2 tables.
Versión del editorhttp://dx.doi.org/10.1186/1471-2105-7-483
URIhttp://hdl.handle.net/10261/17457
DOI10.1186/1471-2105-7-483
ISSN1471-2105
Aparece en las colecciones: (IIM) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
1471-2105-7-483.pdf593,28 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 



NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.