Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/174000
COMPARTIR / EXPORTAR:
logo OpenAIRE logo OpenAIRE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE
logo citeas García, I., Arenas-Alfonseca, L., Moreno, I., Gotor, C., & Romero, L. C. (2018, October 30). HCN Regulates Cellular Processes through Posttranslational Modification of Proteins by S-cyanylation. Plant Physiology. Oxford University Press (OUP). http://doi.org/10.1104/pp.18.01083
Invitar a revisión por pares abierta logo European Open Science Cloud - EU Node   

Título

You have access HCN Regulates Cellular Processes through Posttranslational Modification of Proteins by S-cyanylation

AutorGarcía, Irene CSIC ORCID ; Arenas-Alfonseca, Lucía CSIC ORCID; Moreno, Inmaculada CSIC ORCID; Gotor, Cecilia CSIC ORCID ; Romero, Luis C. CSIC ORCID
Fecha de publicación2019
EditorAmerican Society of Plant Biologists
CitaciónPlant Physiology, 179(1). 2019
ResumenHydrogen cyanide (HCN) is coproduced with ethylene in plant cells and is primarily enzymatically detoxified by the mitochondrial β-CYANOALANINE SYNTHASE (CAS-C1). Permanent or transient depletion of CAS-C1 activity in Arabidopsis (Arabidopsis thaliana) results in physiological alterations in the plant that suggest that HCN acts as a gasotransmitter molecule. Label-free quantitative proteomic analysis of mitochondrially enriched samples isolated from the wild type and cas-c1 mutant revealed significant changes in protein content, identifying 451 proteins that are absent or less abundant in cas-c1 and 353 proteins that are only present or more abundant in cas-c1. Gene ontology classification of these proteins identified proteomic changes that explain the root hairless phenotype and the altered immune response observed in the cas-c1 mutant. The mechanism of action of cyanide as a signaling molecule was addressed using two proteomic approaches aimed at identifying the S-cyanylation of Cys as a posttranslational modification of proteins. Both the 2-imino-thiazolidine chemical method and the direct untargeted analysis of proteins using liquid chromatography-tandem mass spectrometry identified a set of 163 proteins susceptible to S-cyanylation that included SEDOHEPTULOSE 1,7-BISPHOSPHATASE (SBPase), the PEPTIDYL-PROLYL CIS-TRANS ISOMERASE 20-3 (CYP20-3), and ENOLASE2 (ENO2). In vitro analysis of these enzymes showed that S-cyanylation of SBPase Cys74, CYP20-3 Cys259, and ENO2 Cys346 residues affected their enzymatic activity. Gene Ontology classification and protein-protein interaction cluster analysis showed that S-cyanylation is involved in the regulation of primary metabolic pathways, such as glycolysis, and the Calvin and S-adenosyl-Met cycles.
Versión del editorhttps://doi.org/10.1104/pp.18.01083
URIhttp://hdl.handle.net/10261/174000
DOI10.1104/pp.18.01083
Aparece en las colecciones: (IBVF) Artículos



Ficheros en este ítem:
Fichero Descripción Tamaño Formato
14659_2_merged_1540917273.pdf10,74 MBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo

CORE Recommender

PubMed Central
Citations

27
checked on 13-oct-2024

SCOPUSTM   
Citations

45
checked on 13-may-2025

WEB OF SCIENCETM
Citations

30
checked on 28-feb-2024

Page view(s)

349
checked on 07-jul-2025

Download(s)

324
checked on 07-jul-2025

Google ScholarTM

Check

Altmetric

Altmetric



Artículos relacionados:


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.