Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/173836
COMPARTIR / EXPORTAR:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Título

Quantifying excess deaths related to heatwaves under climate change scenarios: A multicountry time series modelling study

AutorGuo, Yuming; Tobías, Aurelio CSIC ORCID; Tong, Shilu
Palabras claveHot temperature
Temperatures
Heat-related mortality
Fecha de publicaciónjul-2018
EditorPublic Library of Science
CitaciónPLoS Medicine 15 (7): e1002629 (2018)
ResumenBackground: Heatwaves are a critical public health problem. There will be an increase in the frequency and severity of heatwaves under changing climate. However, evidence about the impacts of climate change on heatwave-related mortality at a global scale is limited. Methods and findings: We collected historical daily time series of mean temperature and mortality for all causes or nonexternal causes, in periods ranging from January 1, 1984, to December 31, 2015, in 412 communities within 20 countries/regions. We estimated heatwave–mortality associations through a two-stage time series design. Current and future daily mean temperature series were projected under four scenarios of greenhouse gas emissions from 1971–2099, with five general circulation models. We projected excess mortality in relation to heatwaves in the future under each scenario of greenhouse gas emissions, with two assumptions for adaptation (no adaptation and hypothetical adaptation) and three scenarios of population change (high variant, median variant, and low variant). Results show that, if there is no adaptation, heatwave-related excess mortality is expected to increase the most in tropical and subtropical countries/regions (close to the equator), while European countries and the United States will have smaller percent increases in heatwave-related excess mortality. The higher the population variant and the greenhouse gas emissions, the higher the increase of heatwave-related excess mortality in the future. The changes in 2031–2080 compared with 1971–2020 range from approximately 2,000% in Colombia to 150% in Moldova under the highest emission scenario and high-variant population scenario, without any adaptation. If we considered hypothetical adaptation to future climate, under high-variant population scenario and all scenarios of greenhouse gas emissions, the heatwave-related excess mortality is expected to still increase across all the countries/regions except Moldova and Japan. However, the increase would be much smaller than the no adaptation scenario. The simple assumptions with respect to adaptation as follows: no adaptation and hypothetical adaptation results in some uncertainties of projections. Conclusions: This study provides a comprehensive characterisation of future heatwave-related excess mortality across various regions and under alternative scenarios of greenhouse gas emissions, different assumptions of adaptation, and different scenarios of population change. The projections can help decision makers in planning adaptation and mitigation strategies for climate change. © 2018 Guo et al. http://creativecommons.org/licenses/by/4.0/.
Versión del editorhttps://doi.org/10.1371/journal.pmed.1002629
URIhttp://hdl.handle.net/10261/173836
DOI10.1371/journal.pmed.1002629
Aparece en las colecciones: (IDAEA) Artículos




Ficheros en este ítem:
Fichero Descripción Tamaño Formato
Quantifying excess deaths related to.pdf1,99 MBAdobe PDFVista previa
Visualizar/Abrir
Appendix. Quantifying excess deaths related to heatwaves under climate.pdfData collection and supporting tables and figures1,83 MBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo

CORE Recommender

PubMed Central
Citations

50
checked on 14-abr-2024

SCOPUSTM   
Citations

235
checked on 13-abr-2024

WEB OF SCIENCETM
Citations

206
checked on 29-feb-2024

Page view(s)

221
checked on 16-abr-2024

Download(s)

339
checked on 16-abr-2024

Google ScholarTM

Check

Altmetric

Altmetric


Artículos relacionados:


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.