English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/173715
Share/Impact:
Statistics
logo share SHARE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE
Exportar a otros formatos:

DC FieldValueLanguage
dc.contributor.authorBrunner, Danieles_ES
dc.contributor.authorJacquot, Maximees_ES
dc.contributor.authorLarger, Laurentes_ES
dc.contributor.authorFischer, Ingoes_ES
dc.date.accessioned2019-01-03T09:42:17Z-
dc.date.available2019-01-03T09:42:17Z-
dc.date.issued2017-
dc.identifier.citation2017 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) (2017)es_ES
dc.identifier.isbn978-1-5090-6736-7-
dc.identifier.urihttp://hdl.handle.net/10261/173715-
dc.descriptionConference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC).-- Date of Conference: 25-29 June 2017.-- Conference Location: Munich, Germany.es_ES
dc.description.abstractNetworks of photonic elements are a key enabling technology for the realization of multiple next generation photonic systems. Phased beam arrays, coherent beam combining or neuromorphic computing in photonic networks: all these high-impact applications fundamentally require coupling between a large number of photonic components. Recently, a small network of ~20 semiconductor lasers based on coupling via a holographic element was reported [1]. However, the demonstration of large-scale complex photonic networks is lacking.Here, we demonstrate the scalability of holographic coupling, creating a large scale complex network of 1600 opto-electronic oscillators. The network's nonlinear nodes are implemented using a spatial light modulator (SLM) operated in intensity modulation mode. Imaging the SLM-surface through a polarizing beam splitter (PBS) onto a camera and closing the loop between camera and the SLM, we realize a nonlinear iterative map. The state of SLM pixel n is then given by I n (t + 1) = sin 2 (κI n (t) + φ 0 ). Here, I n (t)is the nth pixel intensity at time t, κ the feedback gain and φ 0 a constant phase offset. This equation corresponds to a simplified version of the Ikeda map. Figure 1 (a) schematically illustrates the experimental implementation. An exemplary bifurcation diagram for node (23, 8) is shown in Fig. 1 (b). The route to chaos shown in Fig. 1(b) exhibits the period-doubling behaviour expected from such an Ikeda system.es_ES
dc.language.isoenges_ES
dc.publisherInstitute of Electrical and Electronics Engineerses_ES
dc.rightsclosedAccesses_ES
dc.subjectPhotonicses_ES
dc.subjectCouplingses_ES
dc.subjectLaser beamses_ES
dc.subjectComplex networkses_ES
dc.subjectOscillatorses_ES
dc.subjectReservoirses_ES
dc.subjectChaoses_ES
dc.titleA complex network of 1600 holographically coupled opto-electronic oscillators: Network dynamics and utilisation for reservoir computinges_ES
dc.typecomunicación de congresoes_ES
dc.identifier.doi10.1109/CLEOE-EQEC.2017.8086462-
dc.description.peerreviewedPeer reviewedes_ES
dc.relation.publisherversionhttps://doi.org/10.1109/CLEOE-EQEC.2017.8086462es_ES
dc.relation.csices_ES
oprm.item.hasRevisionno ko 0 false*
Appears in Collections:(IFISC) Libros y partes de libros
Files in This Item:
File Description SizeFormat 
accesoRestringido.pdf59,24 kBAdobe PDFThumbnail
View/Open
Show simple item record
 


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.