English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/173693
Share/Impact:
Statistics
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:
Title

Putrescine biosynthesis and export genes are essential for normal growth of avian pathogenic escherichia coli

AuthorsGuerra, Priscila R.; Herrero-Fresno, Ana; Ladero Losada, Víctor Manuel ; Redruello, Begoña ; dos Santos, Teresa P.; Spiegelhauer, Malene R.; Jelsbak, Lotte; Olsen, John E.
KeywordsFitness
Virulence
E. coli
APEC
Polyamines
UHPLC
Gene expression
Membrane stress
Issue Date27-Dec-2018
PublisherBioMed Central
CitationBMC Microbiology 18(1): 226 (2018)
Abstract[Background] Avian pathogenic Escherichia coli (APEC) is the infectious agent of a wide variety of avian diseases, which causes substantial economic losses to the poultry industry worldwide. Polyamines contribute to the optimal synthesis of nucleic acids and proteins in bacteria. The objectives of this study were to investigate; i) whether APEC E. coli encodes the same systems for biosynthesis and uptake as described for E. coli K12 and ii) the role of polyamines during in vitro growth of an avian pathogenic E. coli strain (WT-ST117- O83:H4T).
[Results] Following whole genome sequencing, polyamine biosynthesis and export genes present in E. coli MG1655 (K-12) were found to be identical in WT-ST117. Defined mutants were constructed in putrescine and spermidine biosynthesis pathways (ΔspeB, ΔspeC, ΔspeF, ΔspeB/C and ΔspeD/E), and in polyamines transport systems (ΔpotE, ΔyeeF, ΔpotABCD and ΔpotFGHI). Contrary to what was observed for MG1655, the ΔpotE-ST117 mutant was growth attenuated, regardless of putrescine supplementation. The addition of spermidine or orthinine restored the growth to the level of WT-ST117. Growth attenuation after induction of membrane stress by SDS suggested that PotE is involved in protection against this stress. The ΔspeB/C-ST117 mutant was also growth attenuated in minimal medium. The addition of putrescine or spermidine to the media restored growth rate to the wild type level. The remaining biosynthesis and transport mutants showed a growth similar to that of WT-ST117. Analysis by Ultra-High Performance Liquid Chromatography revealed that the ΔspeB/C mutant was putrescine-deficient, despite that the gene speF, which is also involved in the synthesis of putrescine, was expressed.
[Conclusions] Deletion of the putrescine transport system, PotE, or the putrescine biosynthesis pathway genes speB/C affected in vitro growth of APEC (ST117- O83:H4) strain, but not E. coli MG1655, despite the high similarity of the genetic make-up of biosynthesis and transport genes. Therefore, blocking these metabolic reactions may be a suitable way to prevent APEC growth in the host without disturbing the commensal E. coli population.
Publisher version (URL)https://doi.org/10.1186/s12866-018-1355-9
URIhttp://hdl.handle.net/10261/173693
DOI10.1186/s12866-018-1355-9
ISSN1471-2180
Appears in Collections:(IPLA) Artículos
Files in This Item:
File Description SizeFormat 
putrescine_coli_2018.pdf2,16 MBAdobe PDFThumbnail
View/Open
Show full item record
Review this work
 

Related articles:


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.