English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/172912
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

Scattering properties and internal structure of magnetic filament brushes

AuthorsPyanzina, Elena S.; Sánchez, Pedro A. ; Cerdà, Joan J. ; Sintes, Tomàs ; Kantorovich, Sofia
Issue Date13-Mar-2017
PublisherRoyal Society of Chemistry (UK)
CitationSoft Matter 13: 2590-2602 (2017)
AbstractPractical applications of polymer brush-like systems rely on a clear understanding of their internal structure. In the case of magnetic nanoparticle filament brushes, the competition between bonding and nonbonding interactions—including long range magnetic dipole–dipole interactions—makes the microstructure of these polymer brush-like systems rather complex. On the other hand, the same interactions open up the possibility to manipulate the meso- and macroscopic responses of these systems by applying external magnetic fields or by changing the background temperature. In this study, we put forward an approach to extract information about the internal structure of a magnetic filament brush from scattering experiments. Our method is based on the mapping of the scattering profiles to the information about the internal equilibrium configurations of the brushes obtained from computer simulations. We show that the structure of the magnetic filament brush is strongly anisotropic in the direction perpendicular to the grafting surface, especially at low temperatures and external fields. This makes slice-by-slice scattering measurements a technique very useful for the study of such systems.
Publisher version (URL)https://doi.org/10.1039/C6SM02606K
Appears in Collections:(IFISC) Artículos
Files in This Item:
File Description SizeFormat 
scattering_properties.pdf6,18 MBAdobe PDFThumbnail
Show full item record
Review this work

Related articles:

WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.