Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/172768
COMPARTIR / EXPORTAR:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Título

Myelinated axons and functional blood vessels populate mechanically compliant rGO foams in chronic cervical hemisected rats

AutorDomínguez-Bajo, Ana; González-Mayorga, Ankor; Guerrero, Carlos R.; Palomares, F. Javier CSIC ORCID; García-González, Ricardo CSIC ORCID ; López-Dolado, Elisa; Serrano, María C. CSIC ORCID
Palabras claveAFM
MRI
Nanomechanics
Reduced graphene oxide
Scaffold
Spinal cord injury
Fecha de publicaciónfeb-2019
EditorElsevier
CitaciónBiomaterials 192: 461-474 (2019)
ResumenNeural diseases at the central nervous system including spinal cord injury (SCI) remain therapeutic challenges. Graphene materials are being delineated as alternative tools for neural repair. Herein, the regenerative ability of reduced graphene oxide (rGO) scaffolds to support pivotal features of neural repair at 4 months after SCI is assessed by an interdisciplinary approach. 3D randomly porous foams have been prepared in mechanical compliance with neural cells and tissues (Young's modulus of 1.3 ± 1.0 kPa) as demonstrated by atomic force microscopy techniques applied ex vivo. After implantation, the significant increase in Young's modulus caused by massive cell/protein infiltration does not alter the mechanical performance of the contralateral spinal cord but provides mechanical stability to the lesion. These aerogels appear fully vascularized and populated with neurites, some of them being myelinated excitatory axons. Clinically-inspired magnetic resonance imaging studies demonstrate that the scaffolds significantly reduce perilesional damage with respect to rats without implants and cause no compressive damage in the contralateral hemicord and rostral/caudal regions. The rGO implants do not either alter the rat spontaneous behaviour or induce toxicity in major organs. Finally, preliminary data suggest hints of rGO sheets dissociation and eventual degradation at the injured spinal cord for the first time. In summary, these 3D porous rGO scaffolds are able to induce, without any further biological functionalization, a compilation of positive effects that have been rarely described before, if ever, for any other material implanted in the injured spinal cord to date.
Versión del editorhttps://doi.org/10.1016/j.biomaterials.2018.11.024
URIhttp://hdl.handle.net/10261/172768
DOI10.1016/j.biomaterials.2018.11.024
ISSN0142-9612
E-ISSN1878-5905
ReferenciasDomínguez-Bajo, Ana; González-Mayorga, Ankor; Guerrero, Carlos R.; Palomares, F. Javier ; García-González, Ricardo ; López-Dolado, Elisa; Serrano, María C. Dataset of the publication "Myelinated axons and functional blood vessels populate mechanically compliant rGO foams in chronic cervical hemisected rats". http://hdl.handle.net/10261/172783
Aparece en las colecciones: (ICMM) Artículos




Ficheros en este ítem:
Fichero Descripción Tamaño Formato
myelinated_axons_functional_Dominguez.pdf1,85 MBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo

CORE Recommender

SCOPUSTM   
Citations

43
checked on 20-abr-2024

WEB OF SCIENCETM
Citations

32
checked on 23-feb-2024

Page view(s)

415
checked on 24-abr-2024

Download(s)

444
checked on 24-abr-2024

Google ScholarTM

Check

Altmetric

Altmetric


Este item está licenciado bajo una Licencia Creative Commons Creative Commons