English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/171990
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE
Exportar a otros formatos:


Pathogen-induced tree mortality interacts with predicted climate change to alter soil respiration and nutrient availability in Mediterranean systems

AuthorsÁvila Castuera, José M. ; Gallardo Correa, A.; Gómez Aparicio, Lorena
Climate change
Forest disease
Global change
Mediterranean shrubs
Non-additive effects
Oak decline
Phytophthora cinnamomi
Quercus suber
Soil nutrients
Soil respiration
Issue DateJan-2019
CitationBiogeochemistry 142(1): pp 53–71 (2019)
AbstractEcosystems worldwide must simultaneously cope with several global change drivers with potential strong effects on ecosystem functioning. These drivers might interact in unexpected ways, but our still limited understanding of these interactive effects precludes us from predicting the impact of global change on ecosystem functioning. In this study we assessed the direct effects of pathogen-induced tree mortality and predicted warming and drought on C, N and P in Mediterranean forest soils affected by the decline of their dominant tree species (i.e. Quercus suber) due to the invasive pathogen Phytophthora cinnamomi. We also explored the potential indirect effects due to species replacement after Q. suber mortality. To achieve our goal, we conducted a soil incubation experiment using soils collected under Q. suber trees with different health status (i.e. healthy, defoliated and dead trees) and from coexistent shrubs (i.e. pioneer and late successional shrubs). These soils were incubated under controlled temperatures and soil moistures, mimicking various climate change scenarios predicted for 2050 and 2100 in the Mediterranean Basin. Our results showed that P. cinnamomi-induced mortality and future warming and drought may interact to simultaneously alter biogeochemical cycles in Q. suber forest soils. Resistance of studied variables to changes in temperature and moisture tended to be lower for dead trees than for healthy and defoliated trees. Moreover, we found that soil respiration and nutrient availability might be affected indirectly by P. cinnamomi-induced mortality due to species replacement. Overall, our results support a high potential of invasive pathogen species for modifying the response of soil functioning to climatic stressors.
Description19 páginas.-- 5 figuras.-- 3 tablas.-- 56 referencias.-- The online version of this article (https://doi.org/10.1007/s10533-018-0521-3) contains supplementary material, which is available to authorized users.
Publisher version (URL)http://dx.doi.org/10.1007/s10533-018-0521-3
Appears in Collections:(IRNAS) Artículos
Files in This Item:
File Description SizeFormat 
Pathogen_induced_tree_mortality_interacts_predicted climate_2018_Postprint.pdf2,72 MBAdobe PDFThumbnail
Show full item record
Review this work

Related articles:

WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.