English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/171747
Share/Impact:
Statistics
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE
Exportar a otros formatos:

DC FieldValueLanguage
dc.contributor.authorMoussa, Mariemes_ES
dc.contributor.authorBader, Najouaes_ES
dc.contributor.authorQuerejeta Montes, Nausikaes_ES
dc.contributor.authorDurán Vera, Inéses_ES
dc.contributor.authorPevida García, Covadongaes_ES
dc.contributor.authorOuederni, Abdelmottalebes_ES
dc.date.accessioned2018-10-30T13:06:56Z-
dc.date.available2018-10-30T13:06:56Z-
dc.date.issued2017-03-06-
dc.identifier.citationJournal of Environmental Chemical Engineering 5(2): 1628–1637 (2017)es_ES
dc.identifier.issn2213-3437-
dc.identifier.urihttp://hdl.handle.net/10261/171747-
dc.description.abstractThis work addresses two environmental issues of major concern: hydrogen storage for hydrogen economy implementation and CO2 capture to reduce greenhouse gas emissions. For these purposes, two granular activated carbons were synthesized through chemical activation of olive stones by means of potassium salts (KOH and K2CO3). The porosity characterizations reveal typical ultramicroporous carbons with average pore sizes of about 0.53 and 0.69 nm for K2CO3 and KOH-activated carbons, respectively. The volumetric measurements of cryogenic hydrogen adsorption show monolayer process. At sub-atmospheric pressures the narrower micropores show stronger binding energy to hydrogen molecules. However, at higher pressures this porosity range saturates and KOH-activated carbon exhibits a H2 storage capacity of 3 wt%, 70% of which is achievable at only 1 bar. CO2 shows a similar behavior than H2 when it was adsorbed purely at 0 °C, and AC_KOH retains its excellence with a capacity of 5.6 mmol g−1at 1 bar. Finally, the two carbons were tested as CO2 adsorbents in conditions representative of post combustion capture applications (10% CO2 at atmospheric pressure and at 50 °C). Both carbons show fast adsorption-desorption kinetics, perfectly described by pseudo-first order model. At these conditions, it was proven that only narrow micropores are essential for CO2 adsorption.es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.relation.isversionofPostprintes_ES
dc.rightsopenAccessen_EN
dc.subjectH2 storagees_ES
dc.subjectCO2 capturees_ES
dc.subjectActivated carbonses_ES
dc.subjectOlive stoneses_ES
dc.subjectAdsorptiones_ES
dc.subjectNarrow microporeses_ES
dc.titleToward sustainable hydrogen storage and carbon dioxide capture in post-combustion conditionses_ES
dc.typeartículoes_ES
dc.identifier.doi10.1016/j.jece.2017.03.003-
dc.description.peerreviewedPeer reviewedes_ES
dc.relation.publisherversionhttps://doi.org/10.1016/j.jece.2017.03.003es_ES
dc.identifier.e-issn2213-2929-
dc.embargo.terms2019-03-07es_ES
dc.rights.licensehttps://creativecommons.org/licenses/by-nc-nd/4.0/es_ES
dc.relation.csices_ES
oprm.item.hasRevisionno ko 0 false*
dc.contributor.orcidPevida García, Covadonga [0000-0002-4662-8448]es_ES
Appears in Collections:(INCAR) Artículos
Files in This Item:
File Description SizeFormat 
Toward_sustainable_hydrogen_Moussa.pdf1,05 MBAdobe PDFThumbnail
View/Open
Show simple item record
 

Related articles:


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.