Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/17107
COMPARTIR / EXPORTAR:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Título

Persistent organochlorine compounds in soils and sediments of European high altitude mountain lakes

AutorGrimalt, Joan O. CSIC ORCID ; Van Drooge, Barend L. CSIC ORCID; Ribes, Alejandra; Vilanova, Rosa M.; Fernández Ramón, M. Pilar CSIC ORCID; Appleby, Peter
Palabras claveOrganochlorine compounds
High mountains
Soils
Lacustrine sediments
Trace chemical pollution in remote environments
Fecha de publicaciónmar-2004
EditorElsevier
CitaciónChemosphere 54(10): 1549-1561 (2004)
ResumenThe composition of persistent organochlorine compounds (OC) in soils and sediments from two high altitude European mountain lakes, Redon in the Pyrenees and Ladove in the Tatra mountains, has been studied. Sediment cores from two additional lakes in the Tatra mountains, Starolesnianske Pleso and Dlugi Staw, have also been examined. DDTs (1.7–13 ng g−1) were the most abundant OC in soils followed by total polychlorobiphenyls (PCBs; 0.41–1.5 ng g−1) and hexachlorobenzene (HCB; 0.15–0.91 ng g−1). In sediments, the dominant OC were also DDTs (3.3–28 ng g−1) and PCBs (2.3–15 ng g−1). These concentrations are low, involving absence of major pollution sources in these high mountain regions.
The downcore OC profiles in soils and sediments were similar but higher concentrations and steeper vertical gradients were observed in the latter. Radiometric determinations showed absence of significant OC transport from catchment to lake. The sediment–soil difference points therefore to a better retention of the OC load in sediments than soils which may be related to the low temperatures that are currently encountered at the bottom of the lake water column and the depletion of sediment bioturbation in these cold environments.
Significant qualitative changes in the soil PCB distributions are observed downcore. These involve a dominance of the high molecular weight congeners in the top core sections and those of lower weight (i.e. less chlorinated) in the bottom. Anaerobic dechlorination of higher molecular weight congeners occurring in microsites, e.g. as observed in flooded or poorly drained soils, could be responsible for these changes. This process could be concurrent to bioturbation.
Descripción13 pages, 6 figures, 2 tables.-- PMID: 14659957 [PubMed].-- Available online Nov 21, 2003.
Versión del editorhttp://dx.doi.org/10.1016/j.chemosphere.2003.09.047
URIhttp://hdl.handle.net/10261/17107
DOI10.1016/j.chemosphere.2003.09.047
ISSN0045-6535
E-ISSN1879-1298
Aparece en las colecciones: (IDAEA) Artículos

Mostrar el registro completo

CORE Recommender

SCOPUSTM   
Citations

129
checked on 25-mar-2024

WEB OF SCIENCETM
Citations

118
checked on 28-feb-2024

Page view(s)

361
checked on 28-mar-2024

Google ScholarTM

Check

Altmetric

Altmetric


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.