English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/170804
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

How Au Outperforms Pt in the Catalytic Reduction of Methane Towards Ethane and Molecular Hydrogen

AutorMartínez, José I. ; Calle-Vallejo, Federico; Andrés, Pedro L. de
Palabras claveNanoparticle catalyst
Methane reduction
Ethane evolution
Hydrogen production
Density functional theory
Fecha de publicaciónago-2018
EditorSpringer Nature
CitaciónTopics in Catalysis 61(12-13): 1290-1299 (2018)
ResumenWithin the context of a “hydrogen economy”, it is paramount to guarantee a stable supply of molecular hydrogen to devices such as fuel cells. Besides, catalytic conversion of the environmentally harmful methane into ethane, which has a significantly lower Global Warming Potential, is an important endeavour. Herein we propose a novel proof-of-concept mechanism to accomplish both tasks simultaneously. We provide transition-state barriers and reaction Helmholtz free energies obtained from first-principles Density Functional Theory by taking account vibrations for 2CH4(g)→C2H6(g)+H2(g) to show that H2 can be produced by subnanometer Pt38 and Au38 nanoparticles. The active sites for the reaction are located on different planes on the two nanoparticles, thus differentiating the working principle of the two metals. The complete cycle to reduce CH4 can be performed on Au and Pt with similar efficiencies, but Au requires only half the working temperature of Pt. This sizable decrease of temperature can be traced back to several intermediate steps, in excellent agreement with previous experiments, but most crucially to the final one where the catalyst must be cleaned from H(⋆) to be able to restart the catalytic cycle. This highlights the importance of including in catalytic models the final cleaning steps. In addition, this case study provides guidelines to capitalize on finite-size effects for the design of new and more efficient nanoparticle catalysts.
Versión del editorhttp://doi.org/10.1007/s11244-018-0992-4
Aparece en las colecciones: (ICMM) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
MatinezTiC2017.pdf Embargado hasta 1 de agosto de 20199,12 MBAdobe PDFVista previa
Visualizar/Abrir     Petición de una copia
Mostrar el registro completo

NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.