Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/169488
Share/Export:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE
Title

Pipeline for specific subtype amplification and drug resistance detection in hepatitis c virus

AuthorsSoria, María Eugenia; Gregori, Josep Maria; Chen, Qian; García-Cehic, Damir; Llorens, Meritxell; Ávila Lucas, Ana Isabel de; Beach, Nathan M. CSIC ORCID; Domingo, Esteban CSIC ORCID; Rodríguez-Frías, Francisco; Buti, María; Esteban, Rafael; Esteban, Juan Ignacio; Quer, Josep; Perales, Celia CSIC ORCID
KeywordsNext-generation sequencing
Viral quasispecies
Antiviral agents
Viral diagnostics
Treatment planning
Issue Date3-Sep-2018
PublisherBioMed Central
CitationBMC Infectious Diseases 18(1): 446 (2018)
Abstract[Background] Despite the high sustained virological response rates achieved with current directly-acting antiviral agents (DAAs) against hepatitis C virus (HCV), around 5–10% of treated patients do not respond to current antiviral therapies, and basal resistance to DAAs is increasingly detected among treatment-naïve infected individuals. Identification of amino acid substitutions (including those in minority variants) associated with treatment failure requires analytical designs that take into account the high diversification of HCV in more than 86 subtypes according to the ICTV website (June 2017).
[Methods] The methodology has involved five sequential steps: (i) to design 280 oligonucleotide primers (some including a maximum of three degenerate positions), and of which 120 were tested to amplify NS3, NS5A-, and NS5B-coding regions in a subtype-specific manner, (ii) to define a reference sequence for each subtype, (iii) to perform experimental controls to define a cut-off value for detection of minority amino acids, (iv) to establish bioinformatics’ tools to quantify amino acid replacements, and (v) to validate the procedure with patient samples.
[Results] A robust ultra-deep sequencing procedure to analyze HCV circulating in serum samples from patients infected with virus that belongs to the ten most prevalent subtypes worldwide: 1a, 1b, 2a, 2b, 2c, 2j, 3a, 4d, 4e, 4f has been developed. Oligonucleotide primers are subtype-specific. A cut-off value of 1% mutant frequency has been established for individual mutations and haplotypes.
[Conclusion] The methodological pipeline described here is adequate to characterize in-depth mutant spectra of HCV populations, and it provides a tool to understand HCV diversification and treatment failures. The pipeline can be periodically extended in the event of HCV diversification into new genotypes or subtypes, and provides a framework applicable to other RNA viral pathogens, with potential to couple detection of drug-resistant mutations with treatment planning.
Publisher version (URL)https://doi.org/10.1186/s12879-018-3356-6
URIhttp://hdl.handle.net/10261/169488
DOI10.1186/s12879-018-3356-6
ISSN1471-2334
Appears in Collections:(CBM) Artículos

Files in This Item:
File Description SizeFormat
pipeline_virus_2018.pdf3,33 MBAdobe PDFThumbnail
View/Open
Show full item record
Review this work

PubMed Central
Citations

11
checked on May 17, 2022

SCOPUSTM   
Citations

14
checked on May 14, 2022

WEB OF SCIENCETM
Citations

14
checked on May 11, 2022

Page view(s)

347
checked on May 16, 2022

Download(s)

249
checked on May 16, 2022

Google ScholarTM

Check

Altmetric

Dimensions


Related articles:


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.