English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/169476
COMPARTIR / IMPACTO:
Estadísticas
logo share SHARE   Add this article to your Mendeley library MendeleyBASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:
Título

Breast cancer phenotypic variability is affected by the biological age

AutorSáez-Freire, María del Mar; Blanco-Gómez, Adrián ; Castillo, Sonia ; Lauber, Chris; Patino-Alonso, María Carmen; Galindo-Villardón, Purificación; Martín-Seisdedos, Carmen; Isidoro-García, María; Muñoz, María E.; Galvis-Jiménez, Julie Milena; Northen, Trent; Castellanos-Martín, Andrés ; Kaderali, Lars; Pérez-Losada, J.
Fecha de publicación2016
EditorSociedad Española de Bioquímica y Biología Molecular
CitaciónXXXIX Congreso de la SEBBM (2016)
ResumenBreast cancer incidence rates considerably increase with age and young age at diagnosis correlates with worse prognosis due to a more aggressive breast cancer behaviour. Biological age estimates the functional status of individuals comparing to other individuals of the same chronological age. We defined the biological age integrating phenotypes of oxidative stress, and calculated Δ biological age as the difference between chronological and predicted (biological) age. Mice with predicted ages older than chronological age, were considered biologically older; and mice with predicted ages younger than chronological age, were considered biologically younger. Our main goals were (i) define biological age using processes that are common to cancer and ageing, such as the oxidative stress, and (ii) analyze breast cancer phenotypic variability according to the biological age. We generated a cohort of mice with different susceptibility and evolution to ERBB2-induced breast cancer, using a backcross strategy, and dissected the disease into different pathophenotypes. We also measured intermediate phenotypes of oxidative stress. Linkage analysis was carried out to identify quantitative trait loci (QTL) associated with these phenotypes, and used multivariate models to define biological age. We identified that biologically older mice developed more aggressive disease than biologically younger mice. We also identified QTL simultaneously associated with Δ biological age and tumor pathophenotypes. We identified several genetic and molecular markers that define biological age and observed that ERBB2 breast cancer phenotypic variability is affected by the biological age.
DescripciónResumen del póster presentado al XXXIX Congreso de la Sociedad Española de Bioquímica y Biología Molecular, celebrado en Salamanca del 5 al 8 de septiembre de 2016.
URIhttp://hdl.handle.net/10261/169476
Aparece en las colecciones: (IBMCC) Comunicaciones congresos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
accesoRestringido.pdf15,38 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.