English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/169325
COMPARTIR / IMPACTO:
Estadísticas
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:
Título

SQANTI: extensive characterization of long-read transcript sequences for quality control in full-length transcriptome identification and quantification.

AutorTardaguila, Manuel; de la Fuente, Lorena; Marti, Cristina; Pereira, Cécile; Pardo-Palacios, Francisco Jose; del Risco, Hector; Ferrell, Marc; Mellado, Maravillas; Macchietto, Marissa; Verheggen, Kenneth; Edelmann, Mariola; Ezkurdia, Iakes; Vazquez, Jesus; Tress, Michael; Mortazavi, Ali; Martens, Lennart; Rodríguez-Navarro, Susana; Moreno-Manzano, Victoria; Conesa, Ana
Fecha de publicación9-feb-2018
EditorCold Spring Harbor Laboratory. Press
CitaciónGenome Research 28: 396-411 (2018)
ResumenHigh-throughput sequencing of full-length transcripts using long reads has paved the way for the discovery of thousands of novel transcripts, even in well-annotated mammalian species. The advances in sequencing technology have created a need for studies and tools that can characterize these novel variants. Here, we present SQANTI, an automated pipeline for the classification of long-read transcripts that can assess the quality of data and the preprocessing pipeline using 47 unique descriptors. We apply SQANTI to a neuronal mouse transcriptome using Pacific Biosciences (PacBio) long reads and illustrate how the tool is effective in characterizing and describing the composition of the full-length transcriptome. We perform extensive evaluation of ToFU PacBio transcripts by PCR to reveal that an important number of the novel transcripts are technical artifacts of the sequencing approach and that SQANTI quality descriptors can be used to engineer a filtering strategy to remove them. Most novel transcripts in this curated transcriptome are novel combinations of existing splice sites, resulting more frequently in novel ORFs than novel UTRs, and are enriched in both general metabolic and neural-specific functions. We show that these new transcripts have a major impact in the correct quantification of transcript levels by state-of-the-art short-read-based quantification algorithms. By comparing our iso-transcriptome with public proteomics databases, we find that alternative isoforms are elusive to proteogenomics detection. SQANTI allows the user to maximize the analytical outcome of long-read technologies by providing the tools to deliver quality-evaluated and curated full-length transcriptomes.
Descripción18 Pages, 5 Figures. Sequencing data from this study have been submitted to the NCBI Sequence Read Archive (SRA; https://www.ncbi.nlm.nih.gov/sra) under study accession number SRP101446.
Versión del editorhttp://dx.doi.org/10.1101/gr.222976.117
URIhttp://hdl.handle.net/10261/169325
DOI10.1101/gr.222976.117
ISSN1088-9051
E-ISSN1549-5469
Aparece en las colecciones: (IBV) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
2018 Genome Res 28-396.pdf3,97 MBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.