English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/168328
COMPARTIR / IMPACTO:
Estadísticas
logo share SHARE   Add this article to your Mendeley library MendeleyBASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:
Título

Deconvolutional networks for point-cloud vehicle detection and tracking in driving scenarios

AutorVaquero, Victor; Pino, Iván del; Moreno-Noguer, Francesc; Solà, Joan; Sanfeliu, Alberto; Andrade-Cetto, Juan
Fecha de publicación2017
CitaciónEuropean Conference on Mobile Robots (2017)
ResumenVehicle detection and tracking is a core ingredient for developing autonomous driving applications in urban scenarios. Recent image-based Deep Learning (DL) techniques are obtaining breakthrough results in these perceptive tasks. However, DL research has not yet advanced much towards processing 3D point clouds from lidar range-finders. These sensors are very common in autonomous vehicles since, despite not providing as semantically rich information as images, their performance is more robust under harsh weather conditions than vision sensors. In this paper we present a full vehicle detection and tracking system that works with 3D lidar information only. Our detection step uses a Convolutional Neural Network (CNN) that receives as input a featured representation of the 3D information provided by a Velodyne HDL-64 sensor and returns a per-point classification of whether it belongs to a vehicle or not. The classified point cloud is then geometrically processed to generate observations for a multi-object tracking system implemented via a number of Multi-Hypothesis Extended Kalman Filters (MH-EKF) that estimate the position and velocity of the surrounding vehicles. The system is thoroughly evaluated on the KITTI tracking dataset, and we show the performance boost provided by our CNN-based vehicle detector over a standard geometric approach. Our lidar-based approach uses about a 4% of the data needed for an image-based detector with similarly competitive results.
DescripciónTrabajo presentado a la European Conference on Mobile Robots (ECMR), celebrada en Paris (Francia) del 6 al 8 de septiembre de 2017.
Versión del editorhttp://ecmr2017.ensta-paristech.fr/
URIhttp://hdl.handle.net/10261/168328
Aparece en las colecciones: (IRII) Comunicaciones congresos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
deconscena.pdf7,72 MBUnknownVisualizar/Abrir
Mostrar el registro completo
 


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.