English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/168297
logo share SHARE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:


Low resolution lidar-based multi object tracking for driving applications

AuthorsPino, Iván del; Vaquero, Victor ; Masini, Beatrice; Solà, Joan ; Moreno-Noguer, Francesc ; Sanfeliu, Alberto ; Andrade-Cetto, Juan
Multi-object tracking
Vehicle detection
Point cloud
Deconvolutional networks
Issue Date2017
PublisherSpringer Nature
CitationROBOT 2017: Third Iberian Robotics Conference: 287-298 (2017)
SeriesAdvances in Intelligent Systems and Computing 693
AbstractVehicle detection and tracking in real scenarios are key com- ponents to develop assisted and autonomous driving systems. Lidar sen- sors are specially suitable for this task, as they bring robustness to harsh weather conditions while providing accurate spatial information. How- ever, the resolution provided by point cloud data is very scarce in com- parison to camera images. In this work we explore the possibilities of Deep Learning (DL) methodologies applied to low resolution 3D lidar sensors such as the Velodyne VLP-16 (PUCK), in the context of vehicle detection and tracking. For this purpose we developed a lidar-based sys- tem that uses a Convolutional Neural Network (CNN), to perform point- wise vehicle detection using PUCK data, and Multi-Hypothesis Extended Kalman Filters (MH-EKF), to estimate the actual position and veloci- ties of the detected vehicles. Comparative studies between the proposed lower resolution (VLP-16) tracking system and a high-end system, using Velodyne HDL-64, were carried out on the Kitti Tracking Benchmark dataset. Moreover, to analyze the influence of the CNN-based vehicle detection approach, comparisons were also performed with respect to the geometric-only detector. The results demonstrate that the proposed low resolution Deep Learning architecture is able to successfully accom- plish the vehicle detection task, outperforming the geometric baseline approach. Moreover, it has been observed that our system achieves a similar tracking performance to the high-end HDL-64 sensor at close range. On the other hand, at long range, detection is limited to half the distance of the higher-end sensor.
DescriptionTrabajo presentado a la Third Iberian Robotics Conference, celebrada en Sevilla del 22 al 24 de noviembre de 2017.
Publisher version (URL)https://doi.org/10.1007/978-3-319-70833-1_24
Identifiersdoi: 10.1007/978-3-319-70833-1_24
isbn: 978-3-319-70832-4
Appears in Collections:(IRII) Libros y partes de libros
Files in This Item:
File Description SizeFormat 
lowappli.pdf4,05 MBUnknownView/Open
Show full item record
Review this work

WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.