English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/168162
Share/Impact:
Statistics
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

Title

V-doped SnS2: a new intermediate band material for a better use of the solar spectrum

AuthorsWahnón Benarroch, Perla ; Conesa Cegarra, José Carlos ; Palacios Clemente, Pablo ; Lucena García, Raquel ; Aguilera Bonet, Irene; Seminovski Pérez, Yohanna; Fresno García, Fernando
Issue Date2011
PublisherRoyal Society of Chemistry (UK)
CitationPhysical Chemistry Chemical Physics 13: 20401-20407 (2011)
AbstractIntermediate band materials can boost photovoltaic efficiency through an increase in photocurrent without photovoltage degradation thanks to the use of two sub-bandgap photons to achieve a full electronic transition from the valence band to the conduction band of a semiconductor structure. After having reported in previous works several transition metal-substituted semiconductors as able to achieve the electronic structure needed for this scheme, we propose at present carrying out this substitution in sulfides that have bandgaps of around 2.0 eV and containing octahedrally coordinated cations such as In or Sn. Specifically, the electronic structure of layered SnS2 with Sn partially substituted by vanadium is examined here with first principles quantum methods and seen to give favourable characteristics in this respect. The synthesis of this material in nanocrystalline powder form is then undertaken and achieved using solvothermal chemical methods. The insertion of vanadium in SnS2 is found to produce an absorption spectrum in the UV-Vis-NIR range that displays a new sub-bandgap feature in agreement with the quantum calculations. A photocatalytic reaction-based test verifies that this sub-bandgap absorption produces highly mobile electrons and holes in the material that may be used for the solar energy conversion, giving experimental support to the quantum calculations predictions.
Publisher version (URL)http://dx.doi.org/10.1039/C1CP22664A
URIhttp://hdl.handle.net/10261/168162
DOI10.1039/C1CP22664A
ISSN1463-9076
E-ISSN1463-9084
Appears in Collections:(ICP) Artículos
Files in This Item:
File Description SizeFormat 
PostprintPCCP2011_JCConesa.pdf897,45 kBAdobe PDFThumbnail
View/Open
Show full item record
Review this work
 

Related articles:


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.