English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/167923
COMPARTIR / IMPACTO:
Estadísticas
logo share SHARE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:
Título

Quantitative Remote Sensing at Ultra-High Resolution with UAV Spectroscopy: A Review of Sensor Technology, Measurement Procedures, and Data Correction Workflows

AutorAasen, Helge; Honkavaara, Eija; Lucieer, Arko; Zarco-Tejada, Pablo J.
Fecha de publicación9-jul-2018
EditorMultidisciplinary Digital Publishing Institute
CitaciónRemote Sensing 10 (7): 1091 (2018)
ResumenIn the last 10 years, development in robotics, computer vision, and sensor technology has provided new spectral remote sensing tools to capture unprecedented ultra-high spatial and high spectral resolution with unmanned aerial vehicles (UAVs). This development has led to a revolution in geospatial data collection in which not only few specialist data providers collect and deliver remotely sensed data, but a whole diverse community is potentially able to gather geospatial data that fit their needs. However, the diversification of sensing systems and user applications challenges the common application of good practice procedures that ensure the quality of the data. This challenge can only be met by establishing and communicating common procedures that have had demonstrated success in scientific experiments and operational demonstrations. In this review, we evaluate the state-of-the-art methods in UAV spectral remote sensing and discuss sensor technology, measurement procedures, geometric processing, and radiometric calibration based on the literature and more than a decade of experimentation. We follow the ‘journey’ of the reflected energy from the particle in the environment to its representation as a pixel in a 2D or 2.5D map, or 3D spectral point cloud. Additionally, we reflect on the current revolution in remote sensing, and identify trends, potential opportunities, and limitations.
URIhttp://hdl.handle.net/10261/167923
Identificadoresdoi: 10.3390/rs10071091
Aparece en las colecciones: Colección MDPI
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
remotesensing-10-01091.pdf5,61 MBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.