Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/167918
COMPARTIR / EXPORTAR:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Campo DC Valor Lengua/Idioma
dc.contributor.authorCaballero, Isabel-
dc.contributor.authorSteinmetz, François-
dc.contributor.authorNavarro, Gabriel-
dc.date.accessioned2018-07-25T12:40:42Z-
dc.date.available2018-07-25T12:40:42Z-
dc.date.issued2018-06-21-
dc.identifier.citationRemote Sensing 10(7): 982 (2018)-
dc.identifier.urihttp://hdl.handle.net/10261/167918-
dc.description.abstractIn this study, we apply high-resolution Sentinel-2A imagery to assist in the monitoring of the southwestern Spanish coast during its first year of data. The aim is to test suitability of MultiSpectral Imager (MSI) at higher resolution (10 m) for mapping Total Suspended Solids (TSS). Several field campaigns are carried out to collect TSS at three different sites in the Guadalquivir estuary, Cadiz Bay and Conil port. A regional multi-conditional remote sensing algorithm with a switching method that automatically selects the most sensitive TSS vs. water reflectance relationship is developed to estimate TSS concentration while avoiding saturation effects. An existing semi-analytical algorithm is calibrated by means of a cross-validation procedure based on both red 664 nm (r = 0.8, NRMSE of 25.06%) and near-infrared (NIR) 865 nm (r = 0.98, NRMSE of 10.28%) parts of the spectrum, showing the MSI sensor’s great potential to estimate TSS even though it was not designed for aquatic remote sensing. The first year of data reveals improved monitoring along the coastal region at unprecedented resolution with accuracy to detect the Estuarine Turbidity Maximum (ETM). ACOLITE and POLYMER Atmospheric Correction strategies are applied over this coastal region (no in-situ data on water reflectance). The results confirm that the flexible POLYMER algorithm can address intense sun-glint effects. These findings encourage further research of water quality studies relying on both operational Sentinel-2A and Sentinel-2B, with great implications to improve the understanding of turbid coastal and inland water environments.-
dc.description.sponsorshipWe would like to thank the ESA and the Copernicus programme for distributing the Sentinel-2 data used in this study. Thanks to Quinten Vanhellemont for his assistance in using ACOLITE processor. We thank the Junta de Andalucía for the in-situ data archives: the Regional Water Management Agency (http://www.chguadalquivir.es/saih/) and the Regional Agroclimatic Station Network (http://www.juntadeandalucia.esagriculturaypesca/ifapa/ria/servlet/FrontController), as well as Puertos del Estado (http://www.puertos.es/). We acknowledge the CSIC Sampling Unit OPECAM (http://www.icman.csic.es/en/facilities/opecam-field-unit/) and Josefa Perez dredging ship for the campaign assistance. Isabel Caballero was supported by a postdoctoral grant from the Junta de Andalucía fellowship program. This work was financially supported by the Junta de Andalucía Projects P09-RNM-4853 and PR11-RNM-7722, PIE 201530I012 and the National Project CTM2014-58181-R. The authors acknowledge the anonymous reviewers, whose comments helped to greatly improve an earlier version of this manuscript.-
dc.publisherMultidisciplinary Digital Publishing Institute-
dc.relationinfo:eu-repo/grantAgreement/MINECO/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/CTM2014-58181-R-
dc.relation.isversionofPublisher's version-
dc.rightsopenAccess-
dc.subjectSentinel-2-
dc.subjectMulti-conditional algorithm-
dc.subjectAtmospheric correction-
dc.subjectGulf of Cadiz-
dc.subjectGuadalquivir estuary-
dc.subjectSuspended solids-
dc.titleEvaluation of the first year of operational sentinel-2A data for retrieval of suspended solids in medium- to high-turbidity waters-
dc.typeartículo-
dc.identifier.doi10.3390/rs10070982-
dc.description.peerreviewedPeer reviewed-
dc.relation.publisherversionhttps://doi.org/10.3390/rs10070982-
dc.identifier.e-issn2072-4292-
dc.date.updated2018-07-25T12:40:42Z-
dc.rights.licensehttp://creativecommons.org/licenses/by/4.0/-
dc.contributor.funderEuropean Space Agency-
dc.contributor.funderJunta de Andalucía-
dc.contributor.funderCSIC - Instituto de Ciencias Marinas de Andalucía (ICMAN)-
dc.contributor.funderMinisterio de Economía y Competitividad (España)-
dc.relation.csic-
dc.identifier.funderhttp://dx.doi.org/10.13039/501100000844es_ES
dc.identifier.funderhttp://dx.doi.org/10.13039/501100003329es_ES
dc.identifier.funderhttp://dx.doi.org/10.13039/501100011011es_ES
dc.type.coarhttp://purl.org/coar/resource_type/c_6501es_ES
item.openairetypeartículo-
item.cerifentitytypePublications-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
Aparece en las colecciones: (ICMAN) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato
remotesensing-10-00982.pdf6,26 MBAdobe PDFVista previa
Visualizar/Abrir
Show simple item record

CORE Recommender

SCOPUSTM   
Citations

61
checked on 27-mar-2024

WEB OF SCIENCETM
Citations

51
checked on 23-feb-2024

Page view(s)

308
checked on 28-mar-2024

Download(s)

237
checked on 28-mar-2024

Google ScholarTM

Check

Altmetric

Altmetric


Este item está licenciado bajo una Licencia Creative Commons Creative Commons