English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/167404
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

Error Characterization of Sea Surface Salinity Products Using Triple Collocation Analysis

AutorHoareau, Nina ; Portabella, Marcos ; Lin, Wenming ; Ballabrera-Poy, Joaquim ; Turiel, Antonio
Fecha de publicaciónabr-2018
EditorInstitute of Electrical and Electronics Engineers
CitaciónIEEE Transactions on Geoscience and Remote Sensing 99: 1-9 (2018)
ResumenThe triple collocation (TC) technique allows the simultaneous calibration of three independent, collocated data sources, while providing an estimate of their accuracy. In this paper, the TC is adapted to validate different salinity data products along the tropical band. The representativeness error (the true variance resolved by the relatively high-resolution systems but not by the relatively low-resolution system) is accounted for in the validation process. A method based on the intercalibration capabilities of TC is used to estimate the representativeness error for each triplet, which is found to impact between 15% and 50% the error estimation of the different products. The method also sorts the different products in terms of their resolving spatiotemporal scales. Six salinity products (sorted from smaller to larger scales) used were: the in situ data from the Global Tropical Moored Buoy Array (TAO), the GLORYS2V3 ocean reanalysis output provided by Copernicus, the satellite-derived Aquarius Level 3 version 4 (AV4) and Soil Moisture and Ocean Salinity (SMOS) objectively analyzed (SOA) maps, and the climatology maps provided by the World Ocean Atlas (WOA). This calibration study is limited to the year 2013, a year when all the products were available. This validation approach aims to assess the quality of the different salinity products at the satellite-resolved spatiotemporal scales. The results show that, at the AV4 resolved scales, the Aquarius product has an error of 0.17, and outperforms TAO, GLORYS2V3, and the SOA maps. However, at the SOA resolved scales (which are coarser than those of the Aquarius product because of the large OA correlation radii used), the SMOS product has an error of 0.20, slightly lower than that of GLORYS2V3, Aquarius, and TAO. The WOA products show the highest errors. Higher order calibration may lead to a more accurate assessment of the quality of the climatological products
Descripción9 pages
Versión del editorhttps://dx.doi.org/10.1109/TGRS.2018.2810442
Aparece en las colecciones: (ICM) Artículos
Ficheros en este ítem:
No hay ficheros asociados a este ítem.
Mostrar el registro completo

NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.