English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/167248
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

Dark matter and fundamental physics with the Cherenkov Telescope Array

AutorDoro, M.; Conrad, J.; Emmanoulopoulos, D.; Sanchez-Conde, M.A.; Barrio, J.A.; Birsin, E.; Bolmont, J.; Brun, P.; Colafrancesco, S.; Connell, S.H.; Contreras, J.L.; Daniel, M.K.; Fornasa, M.; Gaug, M.; Glicenstein, J.F.; Gonzalez-Munoz, A.; Hassan, T.; Horns, D.; Jacholkowska, A.; Jahn, C.; Mazini, R.; Mirabal, N.; Moralejo, A.; Moulin, E.; Nieto, D.; Ripken, J.; Sandaker, H.; Schwanke, U.; Spengler, G.; Stamerra, A.; Viana, A.; Zechlin, H.-S.; Zimmer, S.
Palabras claveLorentz invariance violations
Axion-like particles
Galaxy clusters
Galactic halo
Dwarf satellite galaxies
Dark matter
Magnetic monopoles
Gravitational waves
Galactic centre
Fecha de publicación2013
CitaciónAstroparticle Physics 43: 189- 214 (2013)
ResumenThe Cherenkov Telescope Array (CTA) is a project for a next-generation observatory for very high energy (GeV-TeV) ground-based gamma-ray astronomy, currently in its design phase, and foreseen to be operative a few years from now. Several tens of telescopes of 2-3 different sizes, distributed over a large area, will allow for a sensitivity about a factor 10 better than current instruments such as H.E.S.S, MAGIC and VERITAS, an energy coverage from a few tens of GeV to several tens of TeV, and a field of view of up to 10. In the following study, we investigate the prospects for CTA to study several science questions that can profoundly influence our current knowledge of fundamental physics. Based on conservative assumptions for the performance of the different CTA telescope configurations currently under discussion, we employ a Monte Carlo based approach to evaluate the prospects for detection and characterisation of new physics with the array.First, we discuss CTA prospects for cold dark matter searches, following different observational strategies: in dwarf satellite galaxies of the Milky Way, which are virtually void of astrophysical background and have a relatively well known dark matter density; in the region close to the Galactic Centre, where the dark matter density is expected to be large while the astrophysical background due to the Galactic Centre can be excluded; and in clusters of galaxies, where the intrinsic flux may be boosted significantly by the large number of halo substructures. The possible search for spatial signatures, facilitated by the larger field of view of CTA, is also discussed. Next we consider searches for axion-like particles which, besides being possible candidates for dark matter may also explain the unexpectedly low absorption by extragalactic background light of gamma-rays from very distant blazars. We establish the axion mass range CTA could probe through observation of long-lasting flares in distant sources. Simulated lightcurves of flaring sources are also used to determine the sensitivity to violations of Lorentz invariance by detection of the possible delay between the arrival times of photons at different energies. Finally, we mention searches for other exotic physics with CTA. © 2012 Elsevier B.V. All rights reserved.
Identificadoresdoi: 10.1016/j.astropartphys.2012.08.002
issn: 0927-6505
Aparece en las colecciones: (IAA) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
IAA_2013_AstroparticlePhysics_Doro.pdf2,59 MBAdobe PDFVista previa
Mostrar el registro completo

NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.