Please use this identifier to cite or link to this item:
logo share SHARE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invite to open peer review

Structured prediction with output embeddings for semantic image annotation

AuthorsQuattoni, Ariadna; Ramisa, Arnau CSIC ORCID; Swaroop Madhyastha, Pranava; Simo-Serra, Edgar CSIC; Moreno-Noguer, Francesc CSIC ORCID
Issue Date2016
PublisherAssociation for Computational Linguistics
CitationProceedings of NAACL-HLT: 552–557 (2016)
AbstractWe address the task of annotating images with semantic tuples. Solving this problem requires an algorithm able to deal with hundreds of classes for each argument of the tuple. In such contexts, data sparsity becomes a key challenge. We propose handling this sparsity by incorporating feature representations of both the inputs (images) and outputs (argument classes) into a factorized log-linear model.
DescriptionTrabajo presentado a la conference of the North American Chapter of the Association for Computational Linguistics - Human Language Technologies (NAACL-HLT), celebrada en San Diego, California (US) del 12 al 17 de junio de 2016.
Identifiersisbn: 9781941643914
Appears in Collections:(IRII) Libros y partes de libros

Files in This Item:
File Description SizeFormat
strucembed.pdf6,55 MBUnknownView/Open
Show full item record

CORE Recommender

Page view(s)

checked on May 18, 2024


checked on May 18, 2024

Google ScholarTM


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.