English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/167216
COMPARTIR / IMPACTO:
Estadísticas
logo share SHARE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:
Título

Tracking of microtubules in anisotropic volumes of neural tissue

AutorBuhmann, Julia M.; Gerhard, Stephan; Cook, Matthew; Funke, Jan
Fecha de publicación2016
EditorInstitute of Electrical and Electronics Engineers
CitaciónIEEE 13th International Symposium on Biomedical Imaging: 326-329 (2016)
ResumenFor both the automatic and manual reconstruction of neural circuits from electron microscopy (EM) images, the detection and identification of intracellular structures provide useful cues. This is particularly true for microtubules which are indicative of the scaffold of neuronal morphology. However, to our knowledge, the automated reconstruction of microtubules from EM images of neural tissue has received no attention so far. In this paper, we present an automatic method for the tracking of microtubules in 3D EM volumes of neural tissue. We formulate an energy-based model on short candidate segments of microtubules found by a local classifier. We enumerate and score possible links between candidates, in order to find a cost-minimal subset of candidates and links by solving an integer linear program. The model provides a way to incorporate biological priors including both hard constraints (e.g. microtubules are topologically chains of links) and soft constraints (e.g. high curvature is unlikely). We test our method on a challenging EM dataset of Drosophila neural tissue and show that our model reliably tracks microtubules spanning many image sections.
DescripciónTrabajo presentado al 13th International Symposium on Biomedical Imaging (ISBI), celebrado en Praga (República Checa) del 13 al 16 de abril de 2016.
URIhttp://hdl.handle.net/10261/167216
Identificadoresdoi: 10.1109/ISBI.2016.7493275
isbn: 978-1-4799-2349-6
Aparece en las colecciones: (IRII) Libros y partes de libros
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
accesoRestringido.pdf15,38 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.