English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/167214
COMPARTIR / IMPACTO:
Estadísticas
logo share SHARE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:
Título

Planar PØP: Feature-less pose estimation with applications in UAV localization

AutorAmor-Martinez, Adrian; Santamaria-Navarro, Àngel; Herrero, Fernando ; Ruiz, Alberto ; Sanfeliu, Alberto
Fecha de publicación2016
EditorInstitute of Electrical and Electronics Engineers
CitaciónIEEE International Symposium on Safety, Security, and Rescue Robotics: 15-20 (2016)
ResumenWe present a featureless pose estimation method that, in contrast to current Perspective-n-Point (PnP) approaches, it does not require n point correspondences to obtain the camera pose, allowing for pose estimation from natural shapes that do not necessarily have distinguished features like corners or intersecting edges. Instead of using n correspondences (e.g. extracted with a feature detector) we will use the raw polygonal representation of the observed shape and directly estimate the pose in the pose-space of the camera. This method compared with a general PnP method, does not require n point correspondences neither a priori knowledge of the object model (except the scale), which is registered with a picture taken from a known robot pose. Moreover, we achieve higher precision because all the information of the shape contour is used to minimize the area between the projected and the observed shape contours. To emphasize the non-use of n point correspondences between the projected template and observed contour shape, we call the method Planar PØP. The method is shown both in simulation and in a real application consisting on a UAV localization where comparisons with a precise ground-truth are provided.
DescripciónTrabajo presentado al IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR), celebrado en Lausanne (Suiza) del 23 al 27 de octubre de 2016.
Versión del editorhttps://doi.org/10.1109/SSRR.2016.7784271
URIhttp://hdl.handle.net/10261/167214
Identificadoresdoi: 10.1109/SSRR.2016.7784271
isbn: 978-1-5090-4350-7
Aparece en las colecciones: (IRII) Libros y partes de libros
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
POPplanar.pdf1,37 MBUnknownVisualizar/Abrir
Mostrar el registro completo
 


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.